Lecture

Computational Intelligence

Winter Term 2007/2008

Stefan Droste

28.11.2007 (Wednesday)
Last time we had...

- motivation “fuzziness”
- introduction to fuzzy sets
- fuzzy logic conjunction via t-norms
- fuzzy logic concrete t-norms
 Łukasiewicz, minimum, product, drastic, and others
- fuzzy logic disjunction via t-conorms
- introduction to fuzzy numbers
- fuzzy logic implication via ϕ-operators
Plans for Today

1. Introduction
 Reminder

2. Fuzzy Logic
 Φ-operator
 Concrete Implications
 Negations

3. Fuzzy Control
 Introduction
 Fuzzy Sets
 Subset Relationship
Fuzzy Implications

Like disjunction and conjunction, we can introduce implication in an axiomatic way:

Definition: Let t be some t-norm. An operator $p: [0, 1] \times [0, 1] \rightarrow [0, 1]$ is called a **Φ-operator connected to t** iff for all $u, v, w \in [0, 1]$

1. $(v \leq w) \Rightarrow (p(u, v) \leq p(u, w))$
2. $t(u, p(u, v)) \leq v$
3. $v \leq p(u, t(u, v))$

hold.

Easy to see: These properties are fulfilled for Boolean \land and \Rightarrow
Connecting t-norms and Φ-operators

Theorem: If p is a Φ-operator connected to the t-norm t, then $p(u, v) = \sup\{w \mid t(u, w) \leq v\}$ holds for all $u, v \in [0, 1]$.

Proof: $t(u, p(u, v)) \leq v$ by definition. Thus, $p(u, v) \leq \sup\{w \mid t(u, w) \leq v\}$.

Assume $p(u, v) < \sup\{w \mid t(u, w) \leq v\}$.

Then, $\exists w_0: p(u, v) < w_0$ and $t(u, w_0) \leq v$.

Consider $p(u, t(u, w_0)) \leq p(u, v) < w_0$.

We have $w_0 \leq p(u, t(u, w_0))$ by definition.

Together: $w_0 \leq p(u, t(u, w_0)) \leq p(u, v) < w_0 \rightarrow$ contradiction

Thus, p is uniquely connected to one t-norm.
t-norms and Φ-operators

Do we get a Φ-operator for any t-norm?

The notion of t-norms is very general. We restrict it with continuity in mind.

Definition: A t-norm t is called left continuous iff for all $u, v \in [0, 1]$ and all convergent sequences $(u_i)_{i \geq 1} \in [0, 1]$ with $u_i < u$ and $\lim_{i \to \infty} u_i = u$ we have:

$$\lim_{i \to \infty} t(u_i, v) = t(u, v).$$

Definition: A t-norm t is called lower semicontinuous iff for all $u, v \in [0, 1]$ and all $\varepsilon > 0$ there exists $\delta > 0$ such that for all $u' \in (u - \delta, u]$:

$$t(u', v) > t(u, v) - \varepsilon.$$
Left Continuity and Lower Semicontinuity

Theorem: A t-norm is left continuous iff it is lower semicontinuous.

Proof:

“lower semicontinuous \Rightarrow left continuous”

Consider $(u_i)_{i \geq 1}$ with $u_i < u$ and $\lim_{i \to \infty} u_i = u$.

Clearly, $\lim_{i \to \infty} t(u_i, v) \leq t(u, v)$.

Assume $\lim_{i \to \infty} t(u_i, v) < t(u, v)$.

Define $\varepsilon := (t(u, v) - \lim_{i \to \infty} t(u_i, v))/2$.

There exists u_k with $t(u_k, v) > t(u, v) - \varepsilon$ \rightarrow contradiction

Thus $\lim_{i \to \infty} t(u_i, v) = t(u, v)$ and t is left continuous.
Left Continuity and Lower Semicontinuity (cont.)

“left continuous \Rightarrow lower semicontinuous”

To show: $\forall \varepsilon > 0 : \exists \delta > 0 : \forall u' \in (u - \delta; u] : t(u', \nu) > t(u, \nu) - \varepsilon$

This is the definition of $\lim_{i \to \infty} t(u_i, \nu) = t(u, \nu)$.

Thus, t lower semicontinuous.

Remark: Left continuousness equivalent to

$$t(\sup\{u_i\}, \nu) = \sup\{t(u_i, \nu)\}.$$

Remark 2: Right continuity and upper semicontinuity (and their equivalence for t-norms) can be proved the same way.
\(t\)-norms and \(\Phi\)-operators

Theorem: For a \(t\)-norm \(t \) there exists a \(\Phi\)-operator \(p_t \) connected with \(t \) iff \(t \) is lower semicontinuous.

Proof: “\(t \) lower semicontinuous \(\Rightarrow \) \(p_t \) is \(\Phi\)-operator”

need (1): \(v \leq w \Rightarrow p_t(u, v) \leq p_t(u, w) \)
\(\Leftrightarrow (v \leq w \Rightarrow \sup\{x \mid t(u, x) \leq v\} \leq \sup\{x \mid t(u, x) \leq w\}) \)
\(\checkmark \) since \(t \) non-decreasing

need (2): \(t(u, p_t(u, v)) \leq v \)
\(t(u, p_t(u, v)) = t(u, \sup\{w \mid t(u, w) \leq v\}) \) by definition
\(= \sup\{t(u, w) \mid t(u, w) \leq v\} \leq v \)

need (3): \(v \leq p_t(u, t(u, v)) \)
\(p_t(u, t(u, v)) = \sup\{w \mid t(u, w) \leq t(u, v)\} \) by definition
\(\geq v. \)
Proof: “p_t is Φ-operator \Rightarrow t lower semicontinuous”
$\iff (t$ not lower semicontinuous $\Rightarrow p_t$ is no Φ-operator)

t not lower semicontinuous
$\Rightarrow \exists u \in [0, 1], (v_i)_{i \geq 1}: \sup\{t(u, v_i)\} < t(u, \sup\{v_i\})$

Assume p_t (Φ-operator connected with t) exists.

Let $v := \lim_{i \to \infty} v_i$:

- $t(u, p_t(u, v)) = t(u, \sup\{w \mid t(u, w) \leq v\})$ by definition of p_t
- $t(u, \sup\{w \mid t(u, w) \leq v\}) > \sup\{t(u, w) \mid t(u, w) \leq v\} = v$
- Hence, $t(u, p_t(u, v)) > v$

— Contradiction: p_t is no Φ-operator.
Definition: For a lower semicontinuous t-norm t we denote the uniquely determined Φ-operator connected to t by ϕ_t, i.e.,
\[\phi_t(u, v) = \sup \{ w \mid t(u, w) \leq v \} \]

What ϕ_t do we get for “our” t-norms?

minimum: $t_m(u, v) = \min\{u, v\}$

$\phi_{t_m}(u, v) = \sup\{w \mid \min\{u, w\} \leq v\} = \begin{cases} 1 & \text{if } u \leq v \\ v & \text{otherwise} \end{cases}$
Łukasiewicz: \(t_L(u, v) = \max\{0, u + v - 1\} \)

\(\phi_{t_L}(u, v) = \sup\{w \mid \max\{0, u + w - 1\} \leq v\} \)

= \min\{1, 1 - u + v\}

product: \(t_p(u, v) = u \cdot v \)

\(\phi_{t_p}(u, v) = \sup\{w \mid u \cdot w \leq v\} \)

= \begin{cases}
\min\{1, v/u\} & \text{if } u \neq 0 \\
1 & \text{otherwise}
\end{cases} \)
ϕ_{tm} connected to minimum t-norm

$$\phi_{tm}(u, v) = \begin{cases}
1 & \text{if } u \leq v \\
v & \text{otherwise}
\end{cases}$$
\(\phi_{t_L} \) connected to Łukasiewicz \(t \)-norm

Łukasiewicz: \(\phi_{t_L}(u, v) = \min\{1, 1 - u + v\} \)
ϕ_{tp} connected to product t-norm

\[
\phi_{tp}(u, v) = \begin{cases}
\min\{1, v/u\} & \text{if } u \neq 0 \\
1 & \text{otherwise}
\end{cases}
\]
Properties of ϕ_t

Theorem: Let t be a t-norm. For each ϕ_t defined via

$$\phi_t(u, v) = \sup\{w \mid t(u, w) \leq v\}$$

the following holds:

1. $u \leq v \Rightarrow \phi_t(u, w) \geq \phi_t(v, w)$
2. $u \leq v \Rightarrow \phi_t(u, v) = 1$
3. $\phi_t(1, v) = v$
4. $v \leq \phi_t(u, v)$

Proof:

1. $u \leq v$: need $\sup \{x \mid t(u, x) \leq w\} \geq \sup \{x \mid t(v, x) \leq w\}$ \(\checkmark\)
2. $u \leq v$: need $\sup \{w \mid t(u, w) \leq v\} = 1$ \(\checkmark\)
3. need $\sup \{w \mid t(1, w) \leq v\} = v$ \(\checkmark\)
4. need $v \leq \sup \{w \mid t(u, w) \leq v\}$ \(\checkmark\)
More Properties of ϕ_t

Theorem: For each ϕ_t defined via $\phi_t(u, v) = \sup\{w \mid t(u, w) \leq v\}$ for a lower semicontinuous t the following holds:

1. $\phi_t(u, \phi_t(v, t(u, v))) = 1$
2. $\phi_t(t(u, v), w) \leq \phi_t(u, \phi_t(v, w))$
3. $\phi_t(u, v) \leq \phi_t(t(u, w), t(v, w))$

Proof:

1. $\phi_t(v, t(u, v)) = \sup\{w \mid t(v, w) \leq t(v, u)\} = u$; need $\phi_t(u, u) = 1$ \(\sqrt{\text{ }}\)
2. $\phi_t(t(u, v), w) = \sup\{x \mid t(t(u, v), x) \leq w\}$\[\phi_t(u, \phi_t(v, w)) = \sup\{x \mid t(u, x) \leq \phi_t(v, w)\}\]
 \[= \sup\{x \mid t(u, x) \leq \sup\{x' \mid t(v, x') \leq w\}\}\]
 \(\sqrt{\text{ }}\)
3. $\phi_t(u, v) = \sup\{x \mid t(u, x) \leq v\}$\[\phi_t(t(u, w), t(v, w)) = \sup\{x \mid t(t(u, w), x) \leq t(v, w)\}\]
 need: $\sup\{x \mid t(u, x) \leq v\} \leq \sup\{x \mid t(t(u, x), w) \leq t(v, w)\}$
 \(\sqrt{\text{ }}\)
Some More Properties of ϕ_t

Theorem: For each ϕ_t defined via $\phi_t(u, v) := \sup\{w \mid t(u, w) \leq v\}$ for a lower semicontinuous t the following holds:

1. $u \leq v \iff \phi_t(u, v) = 1$
2. $\phi_t(t(u, v), w) = \phi_t(u, \phi_t(v, w))$

Proof:

1. we have: $u \leq v \implies \phi_t(u, v) = 1$
2. we need: $u \leq v \iff \phi_t(u, v) = 1$
3. $1 = \phi_t(u, v) = \sup\{w \mid t(u, w) \leq v\}$
4. $\implies u = t(u, 1) \leq v$ \(\checkmark\)
Some More Properties of ϕ_t

Theorem: For each ϕ_t defined via $\phi_t(u, v) := \sup \{w \mid t(u, w) \leq v\}$ for a lower semicontinuous t the following hold:

1. $u \leq v \iff \phi_t(u, v) = 1$
2. $\phi_t(t(u, v), w) = \phi_t(u, \phi_t(v, w))$

Proof:

2. we have: $\phi_t(t(u, v), w) \leq \phi_t(u, \phi_t(v, w))$

 we need: $\phi_t(t(u, v), w) \geq \phi_t(u, \phi_t(v, w))$

 $\phi_t(u, \phi_t(v, w)) = \sup \{x \mid t(u, x) \leq \phi_t(v, w)\}$

 $\phi_t(t(u, v), w) = \sup \{x \mid t(t(u, v), x) \leq w\}$

 Thus, suffices: $t(u, x) \leq \phi_t(v, w) \Rightarrow t(u, t(v, x)) \leq w$

 $t(u, t(v, x)) = t(v, t(u, x)) \leq t(v, \phi_t(v, w)) \leq w$
Negation via Implication

Φ-operators yield interesting negations . . .

Definition: Let \(t \) be some lower semicontinuous \(t \)-norm. Define the negation connected to \(t \) as \(n_t(u) := \phi_t(u, 0) \)

Theorem: For any lower semicontinuous \(t \)-norm \(t \), \(n_t \) is a negation.

Proof: We need:

1. \(n_t(0) = 1: \phi_t(0, 0) = \sup\{w \mid t(0, w) \leq 0\} = 1 \checkmark \)
2. \(n_t(1) = 0: \phi_t(1, 0) = \sup\{w \mid t(1, w) \leq 0\} = 0 \checkmark \)
3. \(n_t \) non-increasing: \(n_t(u) = \phi_t(u, 0) = \sup\{w \mid t(u, w) \leq 0\} \checkmark \)
Concrete Negations via ϕ_t

minimum: $\phi_{tm}(u, v) = \begin{cases} 1 & \text{if } u \leq v \\ v & \text{otherwise} \end{cases}$

$n_{tm}(u) = \phi_{tm}(u, 0) = \begin{cases} 1 & u = 0 \\ 0 & u \neq 0 \end{cases}$

Łukasiewicz: $\phi_{tl}(u, v) = \min\{1, 1 - u + v\}$

$n_{tl}(u) = \phi_{tl}(u, 0) = 1 - u$

product: $\phi_{tp}(u, v) = \begin{cases} \min\{1, v/u\} & \text{if } u \neq 0 \\ 1 & \text{otherwise} \end{cases}$

$n_{tp}(u) = \phi_{tp}(u, 0) = \begin{cases} 1 & u = 0 \\ 0 & u \neq 0 \end{cases}$
Motivation

Now we have

- fuzzy conjunction (via t-norms),
- fuzzy disjunction (via t-conorms),
- fuzzy implications (via Φ-operators),
- fuzzy negations (via Φ-operators), and
- fuzzy numbers.

What do we want to do now?

We want to model and control technical systems.

\implies Fuzzy Control
Fuzzy Control

Control can often be described as a functional relationship $f : A \rightarrow B$.

We’d like to have “fuzzy functions.”

More general are fuzzy relations.

Crisp relations can be described as subsets.

We reconsider fuzzy sets, first.
Fuzzy Sets — Again

We already introduced fuzzy sets . . . but we did not work with them.

We want to have operations on fuzzy sets similar to operations on crisp sets.

- intersection \cap
- union \cup
- complement C
- subsets \subseteq
Operations on Fuzzy Sets

Using crisp sets as bottom line:

intersection:

- **crisp:** \(A \cap B = \{ x \mid x \in A \land x \in B \} \)
- **fuzzy:** \(A \cap_t B = \{ x \mid t(x \in A, x \in B) \} \) for any \(t \)-norm \(t \), i.e. the fuzzy set \(A \cap_t B \) is defined as

\[
(A \cap_t B)(x) := t(A(x), B(x)).
\]
t_m-based Intersection

$t_m(u, v) = \min\{u, v\}$
t_L-based Intersection

$t_L(u, v) = \max\{0, u + v - 1\}$
t_p-based Intersection

$t_p(u, v) = uv$
t_d-based Intersection

\[t_d(u, v) = \begin{cases} \min\{u, v\} & \text{if } \max\{u, v\} = 1 \\ 0 & \text{otherwise} \end{cases} \]
Operations on Fuzzy Sets

Using crisp sets as bottom line:

union:
- **crisp:** $A \cup B = \{x \mid x \in A \lor x \in B\}$
- **fuzzy:** $A \cup_t B = \{x \mid s_t(x \in A, x \in B)\}$ for any t-norm t, i.e. the fuzzy set $A \cup_t B$ is defined as

$$(A \cup_t B)(x) := s_t(A(x), B(x)).$$
t_m-based Union

$$s_{t_m}(u, v) = \max\{u, v\}$$
t_L-based Union

$$s_{t_L}(u, v) = \min\{1, u + v\}$$
t_p-based Union

$$s_{t_p}(u, v) = u + v - uv$$
t_d-based Union

$$s_{t_d}(u, v) = \begin{cases}
\max\{u, v\} & \text{if } uv = 0 \\
1 & \text{otherwise}
\end{cases}$$
Using crisp sets as bottom line:

complement:

- **crisp:** $A^C = \{ x \mid \neg(x \in A) \}$
- **fuzzy:** $A^{C_n} = \{ x \mid n(x \in A) \}$ for any negation n

i.e. the fuzzy set A^{C_n} is defined as

$$(A^{C_n})(x) := n(A(x)).$$
n_L-based Negation

$n_L(u) = 1 - u$
n_d-based Negation

\[n_d(u) = \begin{cases}
1 & \text{if } u = 0 \\
0 & \text{otherwise}
\end{cases} \]
n_{wd}-based Negation

\[n_{wd}(u) = \begin{cases}
1 & \text{if } u \neq 1 \\
0 & \text{otherwise}
\end{cases} \]
Subsets

We already defined
\[A \subseteq B \iff \forall x: A(x) \leq B(x). \]

Note: This is crisp!

Is it plausible?

Example:
\[U = \mathbb{N}_0 \]
\[A(x) := \begin{cases} \frac{1}{x^2} & \text{if } x > 0 \\ a & \text{if } x = 0 \end{cases} \quad B(x) := \begin{cases} \frac{1}{x} & \text{if } x > 0 \\ b & \text{if } x = 0 \end{cases} \]

Clearly, \(\forall x \in U \setminus \{0\}: A(x) \leq B(x) \).

But because \(a > b \), \(\neg (A \subseteq B) \).
Fuzzy Subsets

A different perspective:
Crisp sets: \(A \subseteq B \iff \forall x: x \in A \Rightarrow x \in B \)

Definition:
For any lower semicontinuous \(t \)-norm \(t \):
\(A \subseteq_t B \iff \forall x \in U: \phi_t(A(x), B(x)) \)
\(A \equiv_t B \iff t(A \subseteq_t B, B \subseteq_t A) \)

What does \(\forall \) mean for fuzzy sets?

Definition:
\(\forall x: F(x) := \inf \{ F(u) \mid u \in U \} \)
\(\exists x: F(x) := \sup \{ F(u) \mid u \in U \} \)