
TECHNISCHE UNIVERSITÄT DORTMUND

REIHE COMPUTATIONAL INTELLIGENCE

COLLABORATIVE RESEARCH CENTER 531

Design and Management of Complex Technical Processes
and Systems by means of Computational Intelligence Methods

Rigorous Analyses for the Combination of Ant
Colony Optimization and Local Search

Frank Neumann, Dirk Sudholt, Carsten Witt

No. CI-243/08

Technical Report ISSN 1433-3325 March 2008

Secretary of the SFB 531 · Technische Universität Dortmund · Faculty of Compu-

ter Science, LS 2 · 44221 Dortmund · Germany

This work is a product of the Collaborative Research Center 531, “Computational

Intelligence,” at Dortmund University of Technology and was printed with financial

support of the Deutsche Forschungsgemeinschaft.

Rigorous Analyses for the Combination of

Ant Colony Optimization and Local Search

Frank Neumann

Max-Planck-Institut für Informatik

66123 Saarbrücken, Germany

Dirk Sudholt∗ Carsten Witt∗

Fakultät für Informatik, LS 2

Technische Universität Dortmund

44221 Dortmund, Germany

March 18, 2008

Abstract

Ant colony optimization (ACO) is a metaheuristic that produces good
results for a wide range of combinatorial optimization problems. Often
such successful applications use a combination of ACO and local search
procedures that improve the solutions constructed by the ants. In this
paper, we study this combination from a theoretical point of view and
point out situations where introducing local search into an ACO algorithm
enhances the optimization process significantly. On the other hand, we
illustrate the drawback that such a combination might have by showing
that this may prevent an ACO algorithm from obtaining optimal solutions.

1 Introduction

Ant colony optimization (ACO) is a metaheuristic that has been applied success-
fully to various combinatorial optimization problems. Often ACO is combined
with local search methods [3, 6, 7]. Experimental investigations show that the
combination of ACO with a local search procedure improves the performance
significantly. On the other hand, there are examples where local search can-
not help to improve the search process or even mislead the search process [1].
Therefore, it is interesting to figure out how the incorporation of local search
into ACO algorithms can significantly influence the optimization process.

The goal of this paper is to investigate this effect from a theoretical point
of view, using rigorous runtime analyses. The analysis of ACO algorithms with
respect to their runtime behavior is a relatively new research direction. Recently,
initial results with respect to the runtime behavior of variants of the MAX-MIN
Ant System (MMAS) [10] have been obtained [2, 5, 8, 9].

∗This author was supported by the Deutsche Forschungsgemeinschaft (DFG) as a part of
the Collaborative Research Center “Computational Intelligence” (SFB 531).

1

xnv3(n−1)

v3(n−1)+1

v3n

v3(n−1)+2

v0 x1

v2

v1

v6

x3 v9

v3

v5

v4

x2 . . .

v8

v7

Figure 1: Construction graph for pseudo-Boolean optimization

Our aim is to point out situations where the effect of local search becomes
visible in a way that can be tackled by rigorous arguments. Therefore we present
functions where MMAS variants with and without local search show a strongly
different runtime behavior. On one function, MMAS with local search outper-
forms MMAS without local search, while on a different function the effect is
reversed. The differences shown in this paper are so drastic that the question of
whether to use local search or not decides between polynomial and exponential
runtimes.

The outline of this paper is as follows. In Section 2, we define MMAS
variants with and without local search. Section 3 discusses different effects that
a combination of ACO and local search can have. In Section 4, we present a
rigorous analysis showing the benefits of such a combination. Contrarily, in
Section 5 we investigate a different function and prove the opposite effect. We
finish with some conclusions.

2 Algorithms

We consider the runtime behavior of two ACO algorithms for the optimization
of pseudo-Boolean functions. Solutions for a given problem are constructed by
a random walk on a so-called construction graph C according to pheromone
values τ on the edges.

Algorithm 1 (Construct(C, τ)).

1.) v:=s, mark v as visited.

2.) While there is an unvisited successor of v in C:

a.) Let Nv be the set of unvisited successors of v and T :=
∑

(v,w)|w∈Nv
τ(v,w).

b.) Choose w ∈ Nv with probability τ(v,w)/T .

c.) Mark w as visited, set v := w and go to 2.).

3.) Return the solution x and the path P (x) constructed by this procedure.

We examine the construction graph displayed in Figure 1 and known as
Chain [4]. Constructing bit strings of length n, the decision whether a bit xi,
1 ≤ i ≤ n, is set to 1 is made at node v3(i−1). In case the edge (v3(i−1), v3(i−1)+1)

2

(upwards) is chosen, xi is set to 1 in the constructed solution. Otherwise the
edge (v3(i−1), v3(i−1)+2) (downwards) is taken, and xi = 0 holds. After this
decision has been made, the only available edge leads to the decision node for
the next bit.

We ensure
∑

(u,·)∈E τ(u,·) = 1 for all decision nodes u = v3i, 0 ≤ i ≤ n − 1.

Let pi = Prob(xi = 1) be the probability of setting the bit xi to 1 in the next
constructed solution. Due to our setting, we have pi = τ(3(i−1),3(i−1)+1) and
1 − pi = τ(3(i−1),3(i−1)+2), i. e., the pheromone values correspond directly to
the probabilities for choosing the bits in the constructed solution. In addition,
following the MAX-MIN ant system by Stützle and Hoos [10], we restrict each
τ(u,v) to the interval [1/n, 1 − 1/n] such that every solution always has a positive
probability of being chosen.

Depending on whether edge (u, v) is contained in the path P (x) of the con-
structed solution x, the pheromone values are updated to τ ′ as follows:

τ ′
(u,v) = min

{

(1 − ρ) · τ(u,v) + ρ, 1 −
1

n

}

if (u, v) ∈ P (x) and

τ ′
(u,v) = max

{

(1 − ρ) · τ(u,v),
1

n

}

if (u, v) /∈ P (x).

The following algorithm, which we call MMAS*, has been defined by Gutjahr
and Sebastiani [5] under the original name MMASbs. Here, in each generation
the best solution obtained during the run of the algorithm, called best-so-far
solution, is rewarded. Another property of the model is that the best-so-far
solution may not switch to another one that has the same fitness.

Algorithm 2 (MMAS*).

1.) Set τ(u,v) = 1/2 for all edges (u, v).

2.) Compute a solution x∗ using Construct(C, τ).

3.) Update the pheromone values with respect to x∗.

4.) Compute a solution x using Construct(C, τ).

5.) If f(x) > f(x∗), set x∗ := x.

6.) Update the pheromone values with respect to x∗.

7.) Go to 4.).

We enhance the MMAS* with local search. In this work, LocalSearch(x)
is a procedure that, starting from x, repeatedly replaces the current solution
by a Hamming neighbor with strictly larger fitness until a local optimum is
found. We do not specify a pivoting rule, hence we implicitly deal with a class
of algorithms.

3

Algorithm 3 (MMAS-LS*).

1.) Set τ(u,v) = 1/2 for all edges (u, v).

2.) Compute a solution x using Construct(C, τ).

3.) Set x∗ := LocalSearch(x).

4.) Update the pheromone values with respect to x∗.

5.) Compute a solution x using Construct(C, τ).

6.) Set z := LocalSearch(x).

7.) If f(z) > f(x∗), set x∗ := z.

8.) Update the pheromone values with respect to x∗.

9.) Go to 5.).

The fitness functions considered in the following only have a linear number of
fitness values, hence the number of iterations in one local search call is bounded
by O(n). Depending on the pivoting rule, the number of fitness evaluations
needed to find a better Hamming neighbor may vary; however, it is trivially
bounded by n. Hence, the number of function evaluations is at most by a factor
O(n2) larger than the number of generations.

We consider as performance measure the number of generations, also referred
to as optimization time. This yields an advantage for MMAS-LS* w. r. t. fitness
evaluations. However, the upcoming performance gaps are between polynomial
and exponential values, and an advantage of order n2 is negligible.

3 The Effect of Combining ACO and Local Search

The effect of using local search with ACO algorithms is manifold. Firstly, local
search can help to find good solutions more quickly as it increases the “greedi-
ness” within the algorithm. Moreover, the pivoting rule used in local search may
guide the algorithm towards certain regions of the search space. For example,
first ascent pays more attention to the first bits in the bit string, which may
induce a search bias. However, we will not deal with this effect in our study. In
particular, our functions are designed such that the pivoting rule is not essential.

There is, however, another effect that we want to investigate more closely.
The pheromone values induce a sampling distribution over the search space. On
a typical fitness landscape, once the best-so-far solution has reached a certain
quality, sampling new solutions with a high variance becomes inefficient and the
current best-so-far solution x∗ is maintained for some time. Previous studies on
MMAS variants [5, 8] have shown that then the pheromones quickly reach the
upper and lower bounds corresponding to x∗. This means that the algorithm
turns to sampling close to x∗. In other words, MMAS variants typically reach a

4

situation where the “center of gravity” of the sampling distribution follows the
current best-so-far solution and the variance of the sampling distribution is low.

When introducing local search into an MMAS algorithm, this may not be
true. Local search is able to find local optima that are far away from the
current best-so-far solution. In this case the “center of gravity” of the sampling
distribution is far away from the best-so-far solution.

Assume there is a path of Hamming neighbors with increasing fitness leading
to a local optimum. Assume further that all points close to the path have lower
fitness. Then for MMAS* it is likely that the sampling distribution closely
follows the path. The path of increasing fitness need not be straight. In fact,
it can make large bends through the search space until a local optimum is
reached. On the other hand, MMAS-LS*, when starting with the same setting,
will reach the local optimum within a single iteration of local search. Then
the local optimum becomes the new best-so-far solution x∗ while the sampling
distribution is still concentrated around the starting point. In the following
generations, as long as the best-so-far solution is not exchanged, the pheromone
values on all bits synchronously move towards their respective bounds in x∗.
This implies for the sampling distribution that the “center of gravity” takes a
(sort of) direct route towards the local optimum, irrespective of the bent path
taken by local search. An illustration is given in Figure 2.

Figure 2: A sketch of the search space showing the behavior of MMAS* and
MMAS-LS*. The dots and circles indicate the sampling distributions of MMAS*
and MMAS-LS*, resp., at different points of time. While the distribution of
MMAS* tends to follow the fitness-increasing path from left to right, the distri-
bution of MMAS-LS* takes a direct route towards the local optimum.

Consequences are that different parts of the search space are sampled by
MMAS* and MMAS-LS*, respectively. Moreover, with MMAS* the variance
in the solution construction is always quite low as the sampling distribution is
concentrated on certain points on the path. But when the best-so-far solution
with local search suddenly moves a long distance, the variance in the solution
construction may be very high as the bits differing between the starting point
and x∗ may have pheromones close to 1/2. These bits are assigned almost

5

randomly, which strongly resembles a uniform crossover operation well-known
in evolutionary computation.

Our aim in the following is to create functions where MMAS* and MMAS-LS*
have a different runtime behavior. Moreover, we want the performance differ-
ence to be drastic in order to show how deep the impact of local search can
possibly be. To this end, we exploit that the sampling distributions can follow
different routes through the search space. For one function we place a target
region with many global optima on the straight line between starting point and
local optimum and turn the local optimum into a trap that is hard to overcome.
In such a setting, we expect MMAS-LS* to drastically outperform MMAS*.
These ideas are made precise in Section 4. On the other hand, if the region of
global optima is made a region of traps and the global optimum is very close to
the local optimum, MMAS* has a clear advantage over MMAS-LS*. Another
function following this idea is defined and analyzed in Section 5.

4 Benefits of Combining ACO and Local Search

We now formally define a function where local search is beneficial according to
the ideas from Section 3. It is named SP-Target (short path with target). The
path with increasing fitness is given by the set SP = {1i0n−i | 0 ≤ i ≤ n}. The
path ends with the local optimum 1n. A large target area containing all global
optima is specified by OPT = {x | |x|1 ≥ (3/4) · n ∧ H(x, SP) ≥ n/(γ log n)},
where H(x, SP) denotes the Hamming distance of x to the closest search point
of SP and γ ≥ 1 is a constant to be chosen later. For all remaining search
points, the function SP-Target gives hints to reach 0n, the start of the path SP.
We denote by |x|0 the number of zeros in x and by |x|1 the number of ones in x.

SP-Target(x) :=

|x|0 x /∈ (SP ∪ OPT)

n + i x = 1i0n−i ∈ SP

3n x ∈ OPT.

The function SP-Target is sketched in Figure 3. Note that we have actually
defined a class of functions dependent on γ. All following results will hold for
arbitrary constant γ ≥ 1 unless stated otherwise.

The following theorem shows that MMAS* without local search is not suc-
cessful. We restrict ourselves to polynomially large 1/ρ here and also in the
following as otherwise the ACO component would be too close to random search.

Theorem 1. Choosing ρ = 1/poly(n), the optimization time of MMAS* on

SP-Target is 2Ω(n2/9) with probability at least 1 − 2Ω(n2/9).

To prove the preceding theorem, we have to take into account situations
where the pheromone values of MMAS* have not yet reached their bounds and
the construction procedure samples with high variance. This is the case in
particular after initialization. The following lemma will be used to check the
probability of finding the optimum in the early steps of MMAS* on SP-Target.

6

Figure 3: Illustration of Boolean hypercube and the function SP-Target. Arrows
indicate gradients of increasing fitness.

Lemma 1. If the best-so-far solution of MMAS* has never had more than 2n/3
1-bits, the probability of creating a solution with at least 3n/4 1-bits is 2−Ω(n)

in each generation.

Proof. The proof is an application of Chernoff bounds w. r. t. the number of ones
in the solutions created by MMAS*. Let the potential Pt := p1 + · · · + pn at
time t denote the current sum of the probabilities of sampling ones over all bits,
which, by definition of the construction procedure, equals the expected number
of ones in the next constructed solution. Observe that Pt ≤ 2n/3 implies by
Chernoff bounds that the probability of creating a solution with at least 3n/4
1-bits is 2−Ω(n). We now show: if all best-so-far solutions up to time t have at
most 2n/3 ones, then Pi ≤ 2n/3 for 0 ≤ i ≤ t. This will prove the lemma.

For the last claim, we denote by k the number of ones in the best-so-far
solution according to which pheromones are updated. Due to the pheromone
update mechanism, the new potential Pi+1 is obtained from Pi and k according
to Pi+1 = (1 − ρ)Pi + kρ. Hence, if Pi ≤ 2n/3 and k ≤ 2n/3 then also
Pi+1 ≤ 2n/3. The claim follows by induction since P0 = n/2 ≤ 2n/3.

We can now prove Theorem 1.

Proof of Theorem 1. We distinguish two phases in the run according to the
best-so-far solution x∗. Phase 1 holds as long as x∗ /∈ SP and |x∗|1 ≤ 2n/3,
and Phase 2 applies as long as x∗ ∈ SP. Our aim is to show that a typical
run passes through the two phases in their order with a failure probability of

2−Ω(n2/9). The probability of finishing the second phase will be bounded by

2−Ω(n2/9) for each step of the phase. This implies the theorem as, by the union

7

bound, the total probability in 2cn2/9

generations, c > 0 a small constant, is still

2−Ω(n2/9).
Consider the first (and best-so-far) solution x∗ created by MMAS*. By

Chernoff bounds, n/3 ≤ |x∗|1 ≤ 2n/3 with probability 1 − 2−Ω(n). There is
only a single solution in SP for each value of |x∗|1. By the symmetry of the
construction procedure, we conclude Prob(x∗ ∈ SP | |x∗|1 = k) = 1/

(

n
k

)

. The

last expression is 2−Ω(n) for n/3 ≤ k ≤ 2n/3. Hence, with probability 1−2−Ω(n),
there is a non-empty Phase 1. By Lemma 1, the probability that a specific
generation in Phase 1 creates an optimum is 2−Ω(n). Otherwise, the behavior is
as for MMAS* on the function |x|0. Using ρ = 1/poly(n) and the analyses for
the symmetric function |x|1 from [8] and [5], the expected time until the first
phase is finished is polynomial. By the law of total probability and the union
bound, the total failure probability in Phase 1 is bounded by the product of its
expected length and the failure probability in a single generation. Therefore,
the total failure probability for the first phase is still of order 2−Ω(n).

In Phase 2 we have x∗ ∈ SP. The goal is now to show that a solution from
SP with high probability can only be created if the sampling distribution is
sufficiently concentrated around solutions in SP. This in turn makes creating
solutions of high Hamming distance from SP, including OPT, very unlikely.

We make this idea precise and consider a point 1i0n−i ∈ SP. This search
point consists of a prefix of i ones and a suffix of n − i zeros. For a newly
constructed solution x we define P (i) := p1 + · · · + pi as the expected number
of ones in the prefix and S(i) := (1 − pi+1) + · · · + (1 − pn) as the expected
number of zeros in the suffix. The number of ones in the prefix plus the number
of zeros in the suffix yields the number of bits equaling in 1i0n−i and x, i. e.,
n − H

(

1i0n−i, x
)

. We call P (i) (S(i)) insufficient iff P (i) ≤ i − i2/3 (S(i) ≤

(n−i)−(n−i)2/3) holds. We now show that with insufficiencies it is very unlikely
to create 1i0n−i. As this holds for all i, we conclude that if SP is reached after a
certain number of generations, the pheromones do not have insufficiencies, with
high probability.

Let s(i) denote the probability of constructing the solution 1i0n−i. We
distinguish three cases and apply Chernoff bounds to prove the following impli-
cations:

Case 1: i < n2/3. Then insufficient S(i) implies s(i) = 2−Ω(n1/3).

Case 2: i > n − n2/3. Then insufficient P (i) implies s(i) = 2−Ω(n1/3).
Case 3: n2/3 ≤ i ≤ n − n2/3. Then insufficient P (i) and insufficient S(i)

each imply s(i) = 2−Ω(n2/9).
We assume that the described insufficiencies do not occur whenever a best-

so-far solution x∗ = 1i0n−i in Phase 2 is accepted. The failure probability

is 2−Ω(n2/9) for each new best-so-far solution x∗. Generations in between two
exchanges of x∗ cannot create insufficiencies as P (i) and S(i) can only increase
as long as x∗ is maintained. Hence, we do not have insufficiencies in Phase 2

for at least 2Ω(n2/9) generations with probability at least 1− 2−Ω(n2/9).
Being in Phase 2 without insufficiencies, we show depending on the three

cases for the current x∗ = 1i0n−i that creating an optimal solution has prob-

8

ability 2−Ω(n2/9). In the first case, the expected number of zeros in the suffix
of x is at least (n − i) − (n − i)2/3. By Chernoff bounds, the random number

of zeros is at least (n − i) − 2(n − i)2/3 with probability at least 1 − 2−Ω(n1/3).
Along with i < n2/3, it follows that then the solution has Hamming distance at
most 3n2/3 from SP. By the definition of SP-Target, this is not enough to reach
OPT. The second case is treated analogously. In the third case, the probability
of obtaining less than i−2i2/3 ones in the prefix or less than (n− i)−2(n− i)2/3

zeros in the suffix is altogether bounded by 2−Ω(n2/9). Then the solution has
Hamming distance at most 4n2/3 from SP, which is also not enough to reach the
optimum. This finishes the analysis of the second phase, and, therefore, proves
the theorem.

The following theorem proves the benefits of local search.

Theorem 2. Choosing 1/poly(n) ≤ ρ ≤ 1/16, the optimization time of MMAS-
LS* on SP-Target is O(1/ρ) with probability 1−2−Ω(n). If γ ≥ 1 is chosen large
enough but constant, the expected optimization time is also O(1/ρ).

Proof. The first solution x∗ is either 1n or a global optimum. In the first case
all pheromone values increase simultaneously and uniformly from their initial
value 1/2 towards their upper bound 1− 1/n. We divide a run into two phases.
The first phase ends when either all pheromones become larger than 27/32 or
when a global optimum has been found. The second phase ends when a global
optimum has been found, hence it is empty if the first phase ended with an
optimum.

We first bound the length of the first phase by the first point of time t∗

where all pheromone values exceed 27/32. Since the pheromone values are at
least min{1− 1/n, 1− (1/2)(1− ρ)t} after t steps (cf. [8]), solving the equation

1 −

(

1

2

)

(1 − ρ)t = 27/32 ⇐⇒ (1 − ρ)t = 5/16

yields the upper bound

t∗ ≤

⌈

ln(5/16)

ln(1 − ρ)

⌉

≤
ln(16/5)

ρ
+ 1 = O(1/ρ).

The assumption ρ ≤ 1/16 implies that at the last step in the first phase
the pheromone value at any bit is within the interval [25/32, 27/32], pessimisti-
cally assuming that a global optimum has not been found before. The new
search point x then created fulfills the following two properties with probability
1 − O(2−n/2400):

1. 3n
4 ≤ |x|1 ≤ 7n

8 ,

2. H(x, SP) ≥ n/(γ log n).

Using Chernoff bounds with δ := 1/25, the failure probability for the first

event is at most 2e−(25n/32)(δ2/3) = 2e−n/2400. To bound the failure probability

9

of the second event, given the first event, we exploit that all pheromone values
are equal. Therefore, if we know that |x|1 = k then x is uniform over all
search points with k ones. Since the number of search points with k ones is
monotone decreasing for 3n/4 ≤ k ≤ 7n/8, we only consider search points with
k = 7n/8 ones as a worst case. The number of such search points is

(

n
n/8

)

, and

the number of search points of Hamming distance at most m := n/(γ log n)
from SP is at most m ·

(

n
m

)

. Altogether, the probability of H(x, SP) ≤ m given
that 3n/4 ≤ |x|1 ≤ 7n/8 is bounded from above by

m
(

n
m

)

(

n
n/8

) ≤
m

(

en
m

)m

(

n
n/8

)n/8
≤ m · 2o(n) · 8−n/8.

The last expression is even O(2−n/8). Altogether, the sum of the failure proba-
bilities is O(2−n/2400) as suggested, and the first statement follows.

For the second statement we estimate the time in the second phase, pro-
vided that the first phase has been unsuccessful. Using [8] and ρ = 1/poly(n),
the time to reach the pheromone bound is O((log n)/ρ) = poly(n), or an opti-
mum is created anyway. With all pheromones at the upper bound, the solution
construction process equals a standard mutation of 1n, i. e., flipping each bit
in 1n independently with probability 1/n. Flipping the first m bits results in
a global optimum as 0m1n−m has Hamming distance at least m to 1i0n−i for
any i. The probability of creating 0m1n−m in a standard mutation is at least

(

1

n

)n/(γ log n) (

1 −
1

n

)n−n/(γ log n)

≥ e−1 · 2−n/γ .

This means that the expected time in the second phase is O(poly(n)2n/γ). Us-
ing that the first phase is unsuccessful only with probability O(2−n/2400) and
applying the law of total probability, the expected optimization time altogether
is O(1/ρ) + O(2−n/2400) · O(poly(n)2n/γ). The latter is O(1/ρ) for γ > 2400,
which proves the second statement.

5 Drawbacks of Combining ACO and Local Search

Similarly to the function SP-Target, we design another function SP-Trap (short
path with trap) where local search is detrimental, using ideas from Section 3.
We take over the path with increasing fitness, SP = {1i0n−i | 0 ≤ i ≤ n}, but in
contrast to SP-Target, the former region of global optima now becomes a trap,
TRAP = {x | |x|1 ≥ (3/4)·n∧H(x, SP) ≥ n/log n}. The unique global optimum
is placed within distance 2 from the local optimum: OPT = {021n−2}. This
ensures that local search climbing the path SP cannot reach the global optimum.

10

All remaining search points give hints to reach the start of the path.

SP-Trap(x) :=

|x|0 x /∈ (SP ∪ TRAP ∪ OPT)

n + i x = 1i0n−i ∈ SP

3n x ∈ TRAP

4n x ∈ OPT.

The function SP-Trap is sketched in Figure 4.

Figure 4: Illustration of Boolean hypercube and the function SP-Trap. Arrows
indicate gradients of increasing fitness.

In the remainder of this section, we prove that MMAS* is efficient on
SP-Trap while MMAS-LS* fails dramatically. Tuning the definition of SP-Trap,
we could also extend the following theorem by a polynomial bound on the ex-
pected optimization time. We refrain from such modifications to illustrate the
main effects.

Theorem 3. Choosing ρ = 1/poly(n), the optimization time of MMAS* on

SP-Trap is O((n log n)/ρ + n3) with probability 1 − 2−Ω(n2/9).

Proof. By the argumentation from Theorem 1, the probability that a solution

in TRAP is produced within O(n3) generations is at most 2−Ω(n2/9).
Under the assumption that TRAP is never reached until the global optimum

is found, MMAS* behaves equally on SP-Trap and a modified function where
x ∈ TRAP receives fitness |x|0. We apply fitness-level arguments from [5, 8]
to estimate the expected optimization time on the latter, easier function. The
number of fitness levels is O(n). On every fitness level, the number of generations
until either all pheromones are frozen or the current best-so-far solution has
improved is bounded by O((log n)/ρ) with probability 1 [8]. We pessimistically
assume that an improvement can only happen once all pheromones have been

11

frozen. Then the optimization time is bounded by O((n log n)/ρ) plus the sum
of waiting times for improvements on all fitness levels. Showing that the latter
quantity is bounded by O(n3) with probability 1− 2−Ω(n) completes the proof.

After freezing, the solution construction process equals a standard mutation
of the best-so-far solution x∗. The probability for an improvement from x∗ = 1n

is at least 1/(en2). For all other x∗ /∈ TRAP, there is always a better Hamming
neighbor, hence the probability for an improvement is at least 1/(en). Together,
the expected waiting times for improvements on all fitness levels sum up to en2+
O(n) ·en = O(n2). By Markov’s inequality the probability of waiting more than
cn2 steps is at most 1/2 for a suitable constant c > 0. Hence, the probability
that more than n independent phases of length cn2 are needed is bounded by
2−Ω(n). Therefore, the bound O(n3) holds with probability 1 − 2−Ω(n).

Theorem 4. Choosing 1/poly(n) ≤ ρ ≤ 1/16, the optimization time of MMAS-
LS* on SP-Trap is 2Ω(n) with probability 1 − 2−Ω(n).

Proof. We follow the lines of proof for Theorem 2. As long as OPT = 021n−2

is not created, the behavior of MMAS-LS* on SP-Trap and SP-Target is iden-
tical. Reconsider the first phase described in the proof of Theorem 2 (with the
former OPT replaced by TRAP) and denote by P := p1 + · · · + pn the sum of
probabilities of sampling ones over all bits. Throughout the phase, P ≤ 27n/32,
hence the probability of sampling at least n−2 ones, which is necessary to reach
OPT, is 2−Ω(n) according to Chernoff bounds.

With probability 1 − 2−Ω(n), the first best-so-far solution 1n is replaced
by some x∗∗ ∈ TRAP where |x∗∗|1 ≤ 7n/8 when the first phase is ended.
Due to strict selection, x∗∗ then can only be replaced if OPT is created. The
latter has probability 2−Ω(n) for the following reasons: the P -value is at most
27n/32 ≤ 7n/8 when x∗∗ is accepted. Hence, following the argumentation from
the proof of Lemma 1, the P -value will not exceed 7n/8 unless x∗∗ is replaced.
With a P -value of at most 7n/8, creating OPT has probability 2−Ω(n).

6 Conclusions

We have investigated the combination of ACO and local search from a theoretical
point of view and pointed out how this combination can influence the search
process. In particular, we have rigorously shown that the combination of both
methods can outperform ACO algorithms not using local search procedures.
Furthermore, we have proven that the combination of ACO and local search may
mislead the search process. Our results are a further step in the runtime analysis
of ACO and its hybridizations. In the future, the analysis of ACO hybridizations
using more than a single ant on more complicated problems would be desirable.

Acknowledgement

Thanks to the participants of SLS 2007 for stimulating discussions on the issues
investigated in this paper.

12

References

[1] P. Balaprakash, M. Birattari, T. Stützle, and M. Dorigo. Incremental local
search in ant colony optimization: Why it fails for the quadratic assignment
problem. In Proc. of ANTS Workshop ’06, pages 156–166, 2006.

[2] B. Doerr, F. Neumann, D. Sudholt, and C. Witt. On the runtime analysis
of the 1-ANT ACO algorithm. In Proc. of GECCO ’07, pages 33–40. ACM,
2007.

[3] M. Dorigo and T. Stützle. Ant Colony Optimization. MIT Press, 2004.

[4] W. J. Gutjahr. First steps to the runtime complexity analysis of ant colony
optimization. Computers and Operations Research, 35(9):2711–2727, 2008.

[5] W. J. Gutjahr and G. Sebastiani. Runtime analysis of ant colony opti-
mization with best-so-far reinforcement. Methodology and Computing in
Applied Probability, 2008. To appear.

[6] H. H. Hoos and T. Stützle. Stochastic Local Search: Foundations & Appli-
cations. Elsevier/Morgan Kaufmann, 2004.

[7] J. Levine and F. Ducatelle. Ant colony optimisation and local search for bin
packing and cutting stock problems. Journal of the Operational Research
Society, 2004.

[8] F. Neumann, D. Sudholt, and C. Witt. Comparing variants of MMAS ACO
algorithms on pseudo-boolean functions. In Proc. of SLS ’07, volume 4638
of LNCS, pages 61–75. Springer, 2007.

[9] F. Neumann and C. Witt. Runtime analysis of a simple ant colony opti-
mization algorithm. In Proc. of ISAAC ’06, volume 4288 of LNCS, pages
618–627. Springer, 2006.

[10] T. Stützle and H. H. Hoos. MAX-MIN ant system. Journal of Future
Generation Computer Systems, 16:889–914, 2000.

13

