BICO: BIRCH meets Coresets for k-means

Hendrik Fichtenberger, Marc Gillé, Melanie Schmidt, Chris Schwiegelshohn, Christian Sohler

Efficient Algorithms and Complexity Theory, TU Dortmund, Germany

04.09.2013
The k-means Problem

- Given a point set $P \subseteq \mathbb{R}^d$,
- compute a set $C \subseteq \mathbb{R}^d$ with $|C| = k$ centers
- which minimizes

$$\text{cost}(P, C) = \sum_{p \in P} \min_{c \in C} ||c - p||^2,$$

the sum of the squared distances.

- Optimal 1-means center: centroid

$$\mu(P) = \frac{1}{|P|} \sum_{p \in P} p$$
Related work

Popular k-means algorithms

• Lloyd (1982): Lloyd’s algorithm
• Arthur, Vassilvitskii (2007): k-means++

Streaming algorithms for Big Data (one-pass, limited memory)

• MacQueen (1967): MacQueen’s k-means algorithm
• Zhang, Ramakrishnan, Livny (1997): BIRCH
• O’Callaghan, Meyerson, Motwani, Mishra, Guha (2002): StreamLS
• Ackermann, Lammersen, Märtens, Raupach, Sohler, Swierkot (2010): StreamKM++
Our contribution

Streaming algorithm for k-means which

- is fast
- computes high quality solutions
- is easy to implement

Idea

1. Have a look at BIRCH
 - Very fast
 - Solution quality varies
2. Analyze its shortcomings
 - Construction yields no error bound
3. Improve it by drawing on theoretical observations
 - Bound error by utilizing coresets
A bit about BIRCH

- Stores points in a tree
- Tree is updated point by point
- Each node represents a subset of the input point set
A bit about BIRCH

- Stores points in a tree
- Tree is updated point by point
- Each node represents a subset of the input point set
- Subset is summarized by number of points, the centroid of the set and the sum of the squared distances to the centroid
BIRCH: Insertion of a point
Problem BIRCH bases insertion on **normalized cost** and cannot distinguish between the two point clouds.
BIRCH: Insertion of a point

Problem BIRCH bases insertion on normalized cost and cannot distinguish between the two point clouds

Solution New condition for insertion based on coreset theory
Coresets

Given a set of points \(\square \), a weighted subset \(\square \subset \square \) is a \((k, \epsilon)\)-coreset iff for all sets \(\square \) of \(k \) centers it holds that

\[
|\text{cost}(\square, \square) - \text{cost}_{\text{weighted}}(\square, \square)| \leq \epsilon \text{ cost}(\square, \square).
\]
Coresets

Given a set of points ■, a weighted subset ■ ⊂ ■ is a \((k, \epsilon)\)-coreset iff for all sets ■ of \(k\) centers it holds that

\[|\text{cost}(■, ■) - \text{cost}_{\text{weighted}}(■, ■)| \leq \epsilon \text{ cost}(■, ■). \]
Quality guarantee

New insertion decision rule yields the following guarantee:

Theorem

The union of all centroids weighted by the number of points in the corresponding node

- is a $(1 + \varepsilon)$-coreset
- has size $\mathcal{O}(k \cdot \log n \cdot \varepsilon^{-(d+2)})$ for constant d.
Quality guarantee

New insertion decision rule yields the following guarantee:

Theorem
The union of all centroids weighted by the number of points in the corresponding node

- is a \((1 + \varepsilon)\)-coreset
- has size \(\mathcal{O}(k \cdot \log n \cdot \varepsilon^{-(d+2)})\) for constant \(d\).

Practical use

- Choose maximum number of nodes \(m\) (= coreset size)
 - \(m := 200k\) seems to be a good choice
Experimental Setup

Algorithms for comparison

- StreamKM++ and BIRCH (author’s implementations)
- MacQueen’s k–means algorithm (ESMERALDA)

Data sets

<table>
<thead>
<tr>
<th></th>
<th>BigCross</th>
<th>CalTech128</th>
<th>Census</th>
<th>CoverType</th>
<th>Tower</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>1 \cdot 10^7</td>
<td>3 \cdot 10^6</td>
<td>2 \cdot 10^6</td>
<td>6 \cdot 10^5</td>
<td>5 \cdot 10^6</td>
</tr>
<tr>
<td>d</td>
<td>57</td>
<td>128</td>
<td>68</td>
<td>55</td>
<td>3</td>
</tr>
<tr>
<td>$n \cdot d$</td>
<td>7 \cdot 10^8</td>
<td>4 \cdot 10^8</td>
<td>2 \cdot 10^8</td>
<td>3 \cdot 10^7</td>
<td>1 \cdot 10^7</td>
</tr>
</tbody>
</table>

Diagrams

- 100 runs for every test instance
- Values shown in the diagrams are mean values
Experimental Results — BigCross: Costs

BigCross

Cost

Algorithm
StreamKMPP
BICO
MacQueen
BIRCH

Number of centers = k

15 20 25 30 50 100
Experimental Results — BigCross: Time

![BigCross Time Graph](chart.png)

- **Algorithm**: StreamKMPP, BICO, MacQueen, BIRCH

Axes:
- **Time [seconds]**: 0 to 5000
- **Number of centers = k**: 15 to 100
Experimental Results — Census: Costs

Cost vs. Number of centers = k

- **StreamKMPP**
- **BICO**
- **MacQueen**
- **BIRCH**
Experimental Results — Census: Time
Trade off quality against runtime

BigCross: Time, k=1000

BigCross: Costs, k=1000

- **Algorithm**
 - MacQueen
 - BIRCH
 - BICO

BICO coreset size = m

- Time [seconds]
 - 200k
 - 100k
 - 50k
 - 25k
 - 0

- Cost
 - 2e+11
 - 4e+11
 - 6e+11
 - 0e+00
 - 200k
 - 100k
 - 50k
 - 25k
Thank you for your attention!