Lower Bounds for Shortest Paths and Matchings

Krzysztof Onak
CMU

Joint work with Venkat Guruswami
This Talk

Quick Reminder: this is a streaming workshop
Quick Reminder: this is a streaming workshop

Model:

- **Input:** stream of graph edges

Algorithm

\[(5, 4) (1, 2) (4, 3) (2, 5) (3, 1) \ldots \]
Quick Reminder: this is a streaming workshop

Model:
- **Input:** stream of graph edges
- **Worst-case** ordering (as opposed to random)

Algorithm \[\leftarrow (5,4) \ (1,2) \ (4,3) \ (2,5) \ (3,1) \ldots \]
Quick Reminder: this is a streaming workshop

Model:
- Input: stream of graph edges
- Worst-case ordering (as opposed to random)
- Multiple passes allowed

Algorithm

\(\leftarrow (5,4) \ (1,2) \ (4,3) \ (2,5) \ (3,1) \ldots\)
Quick Reminder: this is a streaming workshop

Model:
- Input: stream of graph edges
- Worst-case ordering (as opposed to random)
- Multiple passes allowed

Algorithm: $(5,4) \ (1,2) \ (4,3) \ (2,5) \ (3,1) \ldots$

Goal/main message:
Solving classic graph problems requires $n^{1+\Omega(1)}$ space with $O(1)$ passes
This Talk

- **Quick Reminder**: this is a streaming workshop

- **Model**:
 - **Input**: stream of graph edges
 - **Worst-case** ordering (as opposed to random)
 - **Multiple** passes allowed

- **Algorithm**: \((5,4) (1,2) (4,3) (2,5) (3,1) \ldots\)

- **Goal/main message**:

 Solving classic graph problems requires

 \(\sim n^{1+\Omega(1/p)}\) space with \(O(p)\) passes
Matchings

The Maximum Matching Problem:
Matchings

The Maximum Matching Problem:

What is known:

1 − ε approximation in $\tilde{O}(n)$ space and $f(\epsilon)$ passes

[McGregor 2005] [Eggert, Kliemann, Munstermann, Srivastav 2012] [Ahn, Guha 2011]
Matchings

The Maximum Matching Problem:

What is known:

1. $1 - \epsilon$ approximation in $\tilde{O}(n)$ space and $f(\epsilon)$ passes
 [McGregor 2005] [Eggert, Kliemann, Munstermann, Srivastav 2012] [Ahn, Guha 2011]

2. $n^{1+\Omega(1/\log \log n)}$ lower bound for $(1 - \epsilon^{-1} + \delta)$-approximation in one pass
 [Goel, Kapralov, Khanna 2012] [Kapralov 2012]
Matchings

The Maximum Matching Problem:

What is known:

- **Great open question:** Can obtain $1/2 + \Omega(1)$ approximation in one pass with $\tilde{O}(n)$ space?
Matchings

The Maximum Matching Problem:

What is known:

- **Great open question:** Can obtain $1/2 + \Omega(1)$ approximation in one pass with $\tilde{O}(n)$ space?
 - Two passes are enough
 - [Konrad, Magniez, Mathieu 2011]
 - Possible for random ordering
 - [Konrad, Magniez, Mathieu 2011]
Matchings

The Maximum Matching Problem:

What is known:

Feigenbaum, Kannan, McGregor, Suri, Zhang (2004):
\(\Omega(n^2) \) lower bound for exact matching in one pass
Matchings

The Maximum Matching Problem:

What is known:

- Feigenbaum, Kannan, McGregor, Suri, Zhang (2004):
 \(\Omega(n^2) \) lower bound for exact matching in one pass
- \(\Omega(n) \) lower bounds relatively easy
Matchings

The Maximum Matching Problem:

What is known:

- Feigenbaum, Kannan, McGregor, Suri, Zhang (2004): \(\Omega(n^2) \) lower bound for exact matching in one pass
- \(\Omega(n) \) lower bounds relatively easy
- No \(\omega(n \log n) \) lower bound known even for computing an exact matching in multiple passes
Maximum Matching

Problem: Is there a perfect matching?
Maximum Matching

Problem: Is there a perfect matching?

Our Result:
\[\sim n^{1+\Omega(1/p)} \] space required for \(p \) passes
Maximum Matching

Problem: Is there a perfect matching?

Our Result: \(\sim n^{1+\Omega(1/p)} \) space required for \(p \) passes

Implies lower bounds for:

- What is the size of maximum matching?
Maximum Matching

Problem: Is there a perfect matching?

Our Result:
\[\sim n^{1+\Omega(1/p)} \] space required for \(p \) passes

Implies lower bounds for:
- What is the size of maximum matching?
- Find maximum matching
Problem:
Are two vertices v and w at distance $2(p + 1)$?
Shortest Path(s)

Problem:
Are two vertices \(v \) and \(w \) at distance \(2(p + 1) \)?

Our Result:
\[\sim n^{1+\Omega(1/p)} \] space required for \(p \) passes
Shortest Path(s)

Problem:
Are two vertices \(v \) and \(w \) at distance \(2(p + 1) \)?

Our Result:
\[
\sim n^{1+\Omega(1/p)} \text{ space required for } p \text{ passes}
\]

Previous Results [Feigenbaum, Kannan, McGregor, Suri, Zhang 2005]:

- Computing the first \(k = O(1) \) layers of BFS tree in \(< k/2 \) passes requires \(\Omega(n^{1+1/k}/(\log n)^{1/k}) \) space
Shortest Path(s)

Problem:
Are two vertices \(v \) and \(w \) at distance \(2(p + 1) \)?

Our Result:
\[\sim n^{1+\Omega(1/p)} \] space required for \(p \) passes

Previous Results [Feigenbaum, Kannan, McGregor, Suri, Zhang 2005]:

- Computing the first \(k = O(1) \) layers of BFS tree in \(<k/2\) passes requires \(\Omega(n^{1+1/k}/(\log n)^{1/k}) \) space
- Can be improved to \(< k \) passes using [Guha, McGregor 2007]
Shortest Path(s)

Problem:
Are two vertices \(v \) and \(w \) at distance \(2(p + 1) \)?

Our Result:
\[\sim n^{1+\Omega(1/p)} \] space required for \(p \) passes

Previous Results [Feigenbaum, Kannan, McGregor, Suri, Zhang 2005]:
- Computing the first \(k = O(1) \) layers of BFS tree in \(<k/2\) passes requires \(\Omega(n^{1+1/k}/(\log n)^{1/k}) \) space
- Can be improved to \(<k\) passes using [Guha, McGregor 2007]
- \((2t + 1)\)-spanner construction in \(O(tn^{1+1/t} \log^2 n) \) space and one pass
Shortest Path(s)

Problem:
Are two vertices v and w at distance $2(p + 1)$?

Our Result:
$\sim n^{1+\Omega(1/p)}$ space required for p passes

Previous Results [Feigenbaum, Kannan, McGregor, Suri, Zhang 2005]:

- Computing the first $k = O(1)$ layers of BFS tree in $<k/2$ passes requires $\Omega(n^{1+1/k}/(\log n)^{1/k})$ space
 - Can be improved to $< k$ passes using [Guha, McGregor 2007]

- $(2t + 1)$-spanner construction in $O(tn^{1+1/t} \log^2 n)$ space and one pass

- t-approximation of distance between two nodes in one pass requires $\Omega(n^{1+1/t})$ space
Warmup:
One-Pass Lower Bound
[Feigenbaum et al. 2004]
Construction for Perfect Matching

\[n - 1 \quad n \quad n \quad n - 1 \]
Construction for Perfect Matching

\[
\begin{array}{cccc}
\ldots & \ldots & \ldots & \ldots \\
n - 1 & n & n & n - 1 \\
\ldots & \ldots & \ldots & \ldots \\
\end{array}
\]
Construction for Perfect Matching

\begin{center}
\begin{tikzpicture}
\foreach \i in {0,...,7}
\foreach \j in {0,...,3}
\draw (\i,\j) circle (0.5cm);
\foreach \i in {0,...,6}
\foreach \j in {0,...,3}
\draw (\i,\j) -- (\i+1,\j+1);
\end{tikzpicture}
\end{center}

\[n - 1 \quad n \quad n \quad n - 1 \]
Construction for Perfect Matching

\[n - 1 \quad n \quad n \quad n \quad n - 1 \]
Construction for Perfect Matching

Stream = 1 2

Krzysztof Onak – Lower Bounds for Shortest Paths and Matchings – p. 7/22
Construction for Perfect Matching

Lower bound of $\Omega(n^2)$ via indexing

Alice

$A[1 \ldots n^2] \Rightarrow$ Bob

Bob’s task: output $A[x]$

Krzysztof Onak – *Lower Bounds for Shortest Paths and Matchings* – p. 7/22
Construction for Shortest Path

Approximation better than $5/3$ requires $\Omega(n^2)$ space.
Construction for Shortest Path

Approximation better than $5/3$ requires $\Omega(n^2)$ space
Construction for Shortest Path

Approximation better then $\frac{5}{3}$ requires $\Omega(n^2)$ space

Stream = $\begin{bmatrix} 1 & 2 \\ n & n \\ 1 \end{bmatrix}$
Hard Instance for Multiple Passes
Construction for Perfect Matching

Is there a perfect matching?

Θ(1) columns Each column Θ(n) rows
Construction for Perfect Matching

Is there a perfect matching?

$\Theta(1)$ columns

Each column $\Theta(n)$ rows
Construction for Perfect Matching

Is there a perfect matching?

$\Theta(1)$ columns

Each column $\Theta(n)$ rows
Construction for Perfect Matching

Is there a perfect matching?

$\Theta(1)$ columns

Each column $\Theta(n)$ rows
Construction for Perfect Matching

Is there a perfect matching?

Θ(1) columns

Each column Θ(n) rows
Construction for Perfect Matching

Is there a path of length 9 between red nodes?

Θ(1) columns

Each column Θ(n) rows
Is there a path of length 6 between red nodes?

\[\Theta(1) \] columns

Each column \(\Theta(n) \) rows
Quick Comparison to FKMSZ’05
With multiplayer pointer chasing from [Guha, McGregor 2007]:

![Graph Diagram]
Quick Comparison to FKMSZ’05
With multiplayer pointer chasing from [Guha, McGregor 2007]:

Stream = 1 2 3 4 5 6
Quick Comparison to FKMSZ’05

With multiplayer pointer chasing from [Guha, McGregor 2007]:

Our problem: Fewer passes suffice

[Krzesztof Onak – Lower Bounds for Shortest Paths and Matchings – p. 11/22]
Our Stream Ordering

Is there a path of length 6 between red nodes?
Our Stream Ordering

Is there a path of length 6 between red nodes?

Stream = 1 2 3 4 5 6
Proof Sketch
Proof Sketch

Quick note on our protocols:
- Randomized
- Private randomness
- Public communication
Important Problem: Pointer Chasing

Definition:

- **Input:** k functions $f_i : [n] \rightarrow [n]$
- **Goal:** Compute $f_k(f_{k-1}(\ldots f_2(f_1(1)) \ldots))$
Important Problem: Pointer Chasing

Definition:

- **Input:** k functions $f_i : [n] \rightarrow [n]$
- **Goal:** Compute $f_k(f_{k-1}(\ldots f_2(f_1(1))\ldots))$

Two-player version:

- What players have:
 - Alice: f_2, f_4, f_6, \ldots
 - Bob: f_1, f_3, f_5, \ldots

- Alice speaks first
Important Problem: Pointer Chasing

Definition:

- **Input:** k functions $f_i : [n] \rightarrow [n]$
- **Goal:** Compute $f_k(f_{k-1}(\ldots f_2(f_1(1)) \ldots))$

Two-player version:

- What players have:

 - Alice: f_2, f_4, f_6, \ldots
 - Bob: f_1, f_3, f_5, \ldots

- Alice speaks first

- Nisan, Wigderson (1993):

 Computing in less than $k = \Theta(1)$ messages of communication requires $\Omega(n)$ communication
Important Problem: Pointer Chasing

Definition:

- **Input:** k functions $f_i : [n] \rightarrow [n]$
- **Goal:** Compute $f_k(f_{k-1}(\ldots f_2(f_1(1)) \ldots))$

k-player version:

- What players have:

<table>
<thead>
<tr>
<th>Player 1</th>
<th>Player 2</th>
<th>...</th>
<th>Player $k-1$</th>
<th>Player k</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_k</td>
<td>f_{k-1}</td>
<td>...</td>
<td>f_2</td>
<td>f_1</td>
</tr>
</tbody>
</table>

- Each round: players speak in order Player 1 through Player k
Important Problem: Pointer Chasing

Definition:
- **Input:** \(k \) functions \(f_i : [n] \rightarrow [n] \)
- **Goal:** Compute \(f_k(f_{k-1}(\ldots f_2(f_1(1))\ldots)) \)

\(k \)-player version:
- What players have:

 \[
 \begin{array}{cccccc}
 \text{Player 1} & \text{Player 2} & \ldots & \text{Player} \ k-1 & \text{Player} \ k \\
 f_k & f_{k-1} & \ldots & f_2 & f_1
 \end{array}
 \]

- Each round: players speak in order Player 1 through Player \(k \)

Guha, McGregor (2007):
- Computing in **less then** \(k = \Theta(1) \) rounds requires \(\Omega(n) \) communication
Feigenbaum et al. (2005)

Their Problem:
Compute p levels of BFS tree from v

Important question:
Why can’t reduce to FKMSZ’05?
Feigenbaum et al. (2005)

Their Problem:
Compute p levels of BFS tree from v

Important question:
Why can’t reduce to FKMSZ’05?

Sketch of their proof:
- Take Nisan-Wigderson (1993) communication lower bound for pointer chasing
Feigenbaum et al. (2005)

Their Problem:
Compute p levels of BFS tree from v

Important question:
Why can’t reduce to FKMSZ’05?

Sketch of their proof:
- Take Nisan-Wigderson (1993) communication lower bound for pointer chasing
- Apply direct sum theorem of Jain, Radhakrishnan, Sen (2003): Solving k instances requires k times more communication
Feigenbaum et al. (2005)

Their Problem:
Compute p levels of BFS tree from v

Important question:
Why can’t reduce to FKMSZ’05?

Sketch of their proof:
- Take Nisan-Wigderson (1993) communication lower bound for pointer chasing
- Apply direct sum theorem of Jain, Radhakrishnan, Sen (2003): Solving k instances requires k times more communication
- If can compute BFS of graph of degree $k = n^{\Theta(1/p)}$, then can solve k instances of pointer chasing
Complexity Measures

Functions of the input size:

- **Information Cost**: \(I_{\text{Cost}}(\Pi) = I(X : \Pi(X)) \)

 where

 - \(X \) = input selected from \(\mu \)
 - \(\Pi(X) \) transcript of \(\Pi \) on \(X \)
Complexity Measures

Functions of the input size:

- **Information Cost**: $\text{ICost}_\mu(\Pi) = I(X : \Pi(X))$
 where
 - $X = \text{input selected from } \mu$
 - $\Pi(X) = \text{transcript of } \Pi \text{ on } X$

- **Information Complexity**: $\text{IC}_{\mu,\delta}(P) = \inf_{\Pi} \text{ICost}_\mu(\Pi)$
 where
 - infimum is taken over protocols Π that solve problem P with probability $1 - \delta$
Complexity Measures

Functions of the input size:

- **Information Cost**: $\text{ICost}_\mu(\Pi) = I(X : \Pi(X))$
 where
 - X = input selected from μ
 - $\Pi(X)$ transcript of Π on X

- **Information Complexity**: $\text{IC}_\mu,\delta(P) = \inf_{\Pi} \text{ICost}_\mu(\Pi)$
 where
 - infimum is taken over protocols Π that solve problem P with probability $1 - \delta$

- **Communication Complexity**: $\text{CC}_\delta(P) = \inf_{\Pi} \max_X |\Pi(X)|$
 where
 - infimum is taken over protocols Π that solve problem P on every input with probability $1 - \delta$
Complexity Measures

Functions of the input size:

- **Information Cost:** $\text{ICost}_\mu(\Pi) = I(X : \Pi(X))$

 where

 - $X =$ input selected from μ
 - $\Pi(X)$ transcript of Π on X

- **Information Complexity:** $\text{IC}_{\mu,\delta}(P) = \inf_\Pi \text{ICost}_\mu(\Pi)$

 where

 - infimum is taken over protocols Π that solve problem P with probability $1 - \delta$

- **Communication Complexity:** $\text{CC}_\delta(P) = \inf_\Pi \max_X |\Pi(X)|$

 where

 - infimum is taken over protocols Π that solve problem P on every input with probability $1 - \delta$

Easy to prove: $\text{CC}_\delta(P) \geq \text{IC}_{\mu,\delta}(P)$
Proof Overview

Problem BBB (Basic Building Block):

- $2p$ players with two instances of pointer chasing
Proof Overview

Problem BBB (Basic Building Block):

- $2p$ players with two instances of pointer chasing
- Problem to solve: Is the result the same?
Proof Overview

Problem BBB (Basic Building Block):

- $2p$ players with two instances of pointer chasing
- Problem to solve: Is the result the same?
- (Actually: If some function maps $\Omega(\log n)$ elements to one element, also say YES)
Proof Overview

Problem BBB (Basic Building Block):
- $2p$ players with two instances of pointer chasing
- Problem to solve: Is the result the same?
- (Actually: If some function maps $\Omega(\log n)$ elements to one element, also say YES)

Three Steps:
1. $\text{IC}_{\mu, 1/n^2}(\text{BBB}) \approx \Omega(n)$
Proof Overview

Problem BBB (Basic Building Block):

- 2 players with two instances of pointer chasing
- Problem to solve: Is the result the same?
- (Actually: If some function maps $\Omega(\log n)$ elements to one element, also say YES)

Three Steps:

1. $IC_{\mu,1/n^2}(BBB) \approx \Omega(n)$

2. $IC_{\mu^k,1/(2n^2)}(\bigvee_{i=1}^k BBB) \approx k \cdot IC_{\mu,1/n^2}(BBB) \approx \Omega(kn)$ for $k \ll n$
Proof Overview

Problem BBB (Basic Building Block):

- 2\(p\) players with two instances of pointer chasing
- Problem to solve: Is the result the same?
- (Actually: If some function maps \(\Omega(\log n)\) elements to one element, also say YES)

Three Steps:

1. \(\text{IC}_{\mu, 1/n^2}(\text{BBB}) \approx \Omega(n)\)

2. \(\text{IC}_{\mu^k, 1/(2n^2)}(\bigvee_{i=1}^k \text{BBB}) \approx k \cdot \text{IC}_{\mu, 1/n^2}(\text{BBB}) \approx \Omega(kn)\) for \(k \ll n\)

Implies: \(\text{CC}_{1/10}(\bigvee_{i=1}^k \text{BBB}) \geq \Omega(kn)\)
Proof Overview

Problem BBB (Basic Building Block):

- $2p$ players with two instances of pointer chasing
- Problem to solve: Is the result the same?
- (Actually: If some function maps $\Omega(\log n)$ elements to one element, also say YES)

Three Steps:

1. $IC_{\mu, 1/n^2}(BBB) \approx \Omega(n)$

2. $IC_{\mu^k, 1/(2n^2)}(\bigvee_{i=1}^{k} BBB) \approx k \cdot IC_{\mu, 1/n^2}(BBB) \approx \Omega(kn)$ for $k \ll n$
 Implies: $CC_{1/10}(\bigvee_{i=1}^{k} BBB) \succeq \Omega(kn)$

3. $CC_{1/20}(BFS \text{ tree intersection}) \succeq CC_{1/10}(\bigvee_{i=1}^{k} BBB)$
 for $k = n^{\Theta(1/p)}$
Step 1

Statement:

$$IC_{\mu,1/n^2}(\text{BBB}) \approx \Omega(n)$$
Step 1

Statement:

\[IC_{\mu,1/n^2}(\text{BBB}) \approx \Omega(n) \]

How (1/2):

Modify [Nisan, Wigderson 1993] or [Guha, McGregor 2007]:
Step 1

Statement:

\[\text{IC}_{\mu,1/n^2}(\text{BBB}) \approx \Omega(n) \]

How (1/2):

 - Look at the leaves in the protocol tree
Step 1

Statement:

$$IC_{\mu,1/n^2}(BBB) \approx \Omega(n)$$

How (1/2):

 - Look at the leaves in the protocol tree
 - They show: high entropy of $f_k(\ldots)$
Step 1

Statement:

$$IC_{\mu, 1/n^2}(\text{BBB}) \approx \Omega(n)$$

How (1/2):

 - Look at the leaves in the protocol tree
 - They show: high entropy of $f_k(\ldots)$
 - We show: high entropy of both $f_k(\ldots)$ and $g_k(\ldots)$
Step 1

Statement:

\[\text{IC}_{\mu,1/n^2}(\text{BBB}) \approx \Omega(n) \]

How (1/2):

 - Look at the leaves in the protocol tree
 - They show: high entropy of \(f_k(\ldots) \)
 - We show: high entropy of both \(f_k(\ldots) \) and \(g_k(\ldots) \)
 \[\Rightarrow \text{w.p. } \Omega(1/n), f_k(\ldots) = g_k(\ldots) \text{ and protocol incorrect} \]
Step 1

Statement:

\[\text{IC}_{\mu, 1/n^2}(\text{BBB}) \approx \Omega(n) \]

How (1/2):

 - Look at the leaves in the protocol tree
 - They show: high entropy of \(f_k(\ldots) \)
 - We show: high entropy of both \(f_k(\ldots) \) and \(g_k(\ldots) \)
 \[\Rightarrow \text{w.p. } \Omega(1/n), f_k(\ldots) = g_k(\ldots) \text{ and protocol incorrect} \]
 - Obtain lower bound for communication complexity on random input
Step 1

Statement:

$$IC_{\mu, 1/n^2}(BBB) \approx \Omega(n)$$

How (2/2):

Use [Jain, Radhakrishnan, Sen 2003]?
Step 1

Statement:

\[\text{IC}_{\mu, 1/n^2}(\text{BBB}) \approx \Omega(n) \]

How (2/2):

- Use [Jain, Radhakrishnan, Sen 2003]

\[\Pi = \text{protocol w/small } \text{ICost}_\mu(\Pi), \Theta(1) \text{ messages, } \epsilon \text{ error} \]
Step 1

Statement:

$$IC_{\mu, 1/n^2}(BBB) \approx \Omega(n)$$

How (2/2):

Use [Jain, Radhakrishnan, Sen 2003]?

$$\Pi = \text{protocol w/small } ICost_\mu(\Pi), \Theta(1) \text{ messages, } \epsilon \text{ error}$$

There is protocol $$\Pi'$$ with total communication

$$\sim ICost_\mu(\Pi)/\delta^2$$

that errs with probability $$\epsilon + \delta$$
Step 1

Statement:

\[\text{IC}_{\mu,1/n^2}(\text{BBB}) \approx \Omega(n) \]

How (2/2):

- Use [Jain, Radhakrishnan, Sen 2003]?
 \(\Pi = \) protocol w/small \(\text{ICost}_\mu(\Pi) \), \(\Theta(1) \) messages, \(\epsilon \) error

 There is protocol \(\Pi' \) with total communication
 \(\sim \text{ICost}_\mu(\Pi)/\delta^2 \) that errs with probability \(\epsilon + \delta \)

- Won’t work! \(\delta = o(1/n) \)
Step 1

Statement:

\[IC_{\mu,1/n^2}(BBB) \approx \Omega(n) \]

How (2/2):

- Use [Jain, Radhakrishnan, Sen 2003]?
 \[\Pi = \text{protocol w/small } \text{ICost}_\mu(\Pi), \Theta(1) \text{ messages, } \epsilon \text{ error} \]

 There is protocol \(\Pi' \) with total communication
 \(\sim \text{ICost}_\mu(\Pi)/\delta^2 \) that errs with probability \(\epsilon + \delta \)

- Won’t work! \(\delta = o(1/n) \)

- Resolution:
 - Modify the [JRS] technique to make \(\Pi' \) send short messages most of the time
Step 1

Statement:

$$IC_{\mu, 1/n^2}(BBB) \approx \Omega(n)$$

How (2/2):

- Use [Jain, Radhakrishnan, Sen 2003]?
 - $\Pi = \text{protocol w/small } I\text{Cost}_\mu(\Pi), \Theta(1) \text{ messages, } \epsilon \text{ error}$
 - There is protocol Π' with total communication
 $$\sim I\text{Cost}_\mu(\Pi)/\delta^2$$
 that errs with probability $\epsilon + \delta$

- Won’t work! $\delta = o(1/n)$

Resolution:

- Modify the [JRS] technique to make Π' send short messages most of the time
- Modify [Nisan, Wigderson 1993] to work on such protocols
Step 2

Statement:

$$\text{IC}_{\mu^k,1/(2n^2)}(\bigvee_{i=1}^{k} \text{BBB}) \approx k \cdot \text{IC}_{\mu,1/n^2}(\text{BBB}) \approx \Omega(kn) \quad \text{for } k \ll n$$
Step 2

Statement:
\[
\text{IC}_{\mu^k, 1/(2n^2)}(\bigvee_{i=1}^{k} \text{BBB}) \approx k \cdot \text{IC}_{\mu, 1/n^2}(\text{BBB}) \approx \Omega(kn) \quad \text{for } k \ll n
\]

How:

- Product distribution:
 \[
 \text{information cost} = \sum_{i=1}^{k} \text{information cost for instance } i
 \]
Step 2

Statement:
\[\text{IC}_{\mu^k, 1/(2n^2)} \left(\bigvee_{i=1}^{k} \text{BBB} \right) \approx k \cdot \text{IC}_{\mu, 1/n^2}(\text{BBB}) \approx \Omega(kn) \text{ for } k \ll n \]

How:

- **Product distribution:**
 information cost = \(\sum_{i=1}^{k} \) information cost for instance \(i \)

- For specific instance, \(\bigvee (\text{other instances}) = \text{false} \) most of the time
Step 2

Statement:
\[\text{IC}_{\mu^k, 1/(2n^2)}(\bigvee_{i=1}^{k} \text{BBB}) \approx k \cdot \text{IC}_{\mu, 1/n^2}(\text{BBB}) \approx \Omega(kn) \text{ for } k \ll n \]

How:

- **Product distribution:**
 information cost = \(\sum_{i=1}^{k} \text{information cost for instance } i \)

- For specific instance, \(\bigvee (\text{other instances}) = \text{false} \) most of the time

- Information cost won’t decrease significantly on \(\bigvee (\text{other instances}) = \text{true} \)
Step 3

Statement:

\[CC_{1/20}(\text{BFS tree intersection}) \gtrsim CC_{1/10}(\bigvee_{i=1}^{k} \text{BBB}) \]

for \(k = n^{\Theta(1/p)} \)
Step 3

Statement:

\[CC_{1/20}(\text{BFS tree intersection}) \gtrsim CC_{1/10}\left(\bigvee_{i=1}^{k} \text{BBB}\right) \]

for \(k = n^{\Theta(1/p)} \)

How:

- **Want**: Show protocol for \(\bigvee_{i=1}^{k} \text{BBB} \)
Step 3

Statement:

\[
CC_{1/20}(\text{BFS tree intersection}) \gtrapprox CC_{1/10}(\bigvee_{i=1}^{k} \text{BBB})
\]

for \(k = n^{\Theta(1/p)} \)

How:

- **Want:** Show protocol for \(\bigvee_{i=1}^{k} \text{BBB} \)
- Randomly relabel intermediate results of functions and stack them on top of each other
 \(\Rightarrow \) instance for (BFS tree intersection)
Step 3

Statement:

\[CC_{1/20}(\text{BFS tree intersection}) \gtrsim CC_{1/10}(\bigvee_{i=1}^{k} \text{BBB}) \]

for \(k = n^{\Theta(1/p)} \)

How:

- **Want:** Show protocol for \(\bigvee_{i=1}^{k} \text{BBB} \)
- Randomly relabel intermediate results of functions and stack them on top of each other
 \[\Rightarrow \text{instance for (BFS tree intersection)} \]

- **Result:**
 - If pair of pointer chasing instances gave the same element, BFS trees will intersect
Step 3

Statement:

\[\text{CC}_{1/20}(\text{BFS tree intersection}) \gtrsim \text{CC}_{1/10}(\bigvee_{i=1}^{k} \text{BBB}) \]

for \(k = n^{\Theta(1/p)} \)

How:

- **Want:** Show protocol for \(\bigvee_{i=1}^{k} \text{BBB} \)
- Randomly relabel intermediate results of functions and stack them on top of each other
 \(\Rightarrow \) instance for (BFS tree intersection)

Result:

- If pair of pointer chasing instances gave the same element, BFS trees will intersection
- If no pair gave the same element and no \(\Theta(\log n) \)-to-1 mapping, BFS trees unlikely to intersect
Step 3

Statement:

$$CC_{1/20}(\text{BFS tree intersection}) \gg CC_{1/10}(\bigvee_{i=1}^{k} \text{BBB})$$

for $k = n^{\Theta(1/p)}$

How:

- **Want:** Show protocol for $\bigvee_{i=1}^{k} \text{BBB}$
- Randomly relabel intermediate results of functions and stack them on top of each other
 \Rightarrow instance for (BFS tree intersection)

Result:

- If pair of pointer chasing instances gave the same element, BFS trees will intersection
- If no pair gave the same element and no $\Theta(\log n)$-to-1 mapping, BFS trees unlikely to intersect
- $\Theta(2p)$ additional communication to notice $\Theta(\log n)$-to-1 mapping \Rightarrow output “YES”
What we prove:

Problems “Is there a perfect matching?”
and “Are v and w at distance $2p$?”
in $< p$ passes require $\sim n^{1+\Omega(1/p)}$ space.
What we prove:

Problems “Is there a perfect matching?”
and “Are v and w at distance $2p$?”
in $< p$ passes require $\sim n^{1+\Omega(1/p)}$ space

Open Questions:

Can simplify?
What we prove:

Problems “Is there a perfect matching?”
and “Are v and w at distance $2p$?”
in $< p$ passes require $\sim n^{1+\Omega(1/p)}$ space

Open Questions:

- Can simplify?
- **Better bound:** Is looking for a few augmenting paths harder?
What we prove:

Problems “Is there a perfect matching?”
and “Are \(v\) and \(w\) at distance \(2p\)?”
in \(< p\) passes require \(\sim n^{1+\Omega(1/p)}\) space

Open Questions:

- Can simplify?
- **Better bound:** Is looking for a few augmenting paths harder?
- Can the techniques be used for approximate matchings?
Questions?