Fast Protocols for Edit Distance Through Locally Consistent Parsing

Hossein Jowhari

MADALGO
Aarhus University
Definitions

Edit Distance

\[x, y \in \Sigma^n \]

\(ed(x, y) \) : Minimum number of character substitutions, insertions, deletions for converting \(x \) to \(y \)

Hamming

\(H(x, y) \):
Minimum number of substitutions only

Ulam

Edit distance
Over Non-repetitive Strings (permutations)
Definitions: two-player model
Definitions: two-player model
Definitions: two-player model

Alice \rightarrow Bob

x \rightarrow y
Definitions : two-player model

\(d(x, y) < k\) ?
Definitions: simultaneous model

Referee

Alice

Bob

\[x \leftrightarrow y \]
Definitions: simultaneous model
Definitions: simultaneous model

\[ed(x, y) < k \]
Definitions: simultaneous model

\[ed(x, y) < k \]
Definitions: simultaneous model

Communication complexity

Time complexity!
Applications

Transmission of data over errornous channels

Remote File Synchronization

Summarization of rankings for comparisons
Previous Results: Hamming

Sparse Recovery Scheme

0(k logn log(n/k)) protocol
Previous Results: Hamming

Sparse Recovery Scheme

Alice
\[Ax \]
\[x \]

Referee
\[A(x-y) \]

Bob
\[Ay \]
\[y \]

There are more efficient (non-linear) methods: Lipsky-Porat CPM 2007

\[O(k \log n \log(n/k)) \] protocol

\[O(k \log n) \] bit protocol (also streaming algorithm)

it outputs \(x-y \)

Time complexity: \(O(s \log n) \) for \(s \)-sparse vectors
Previous Results

$O(k \log n)$ bit 1-way protocol

Time complexity: $n^{o(k)}$ Orlitsky FOCS 91

$O(k \log k \log(n/k))$ bit $O(\log n)$-round protocol

Time complexity: $\text{Poly}(n)$ Cormode, Paterson, Sahinalp, and Vishkin. SODA 2000

$O(k \log k \log(n/k))$ bit 1-way protocol

Time complexity: $\text{Poly}(n)$ Irmak, Mihaylov, and TSuel. INFOCOM 2005
New Results

Edit distance

k vs $k+1$

$\tilde{O}(k\log^2 n)$ bit 1-way protocol

Time complexity: $\tilde{O}(\text{nlogn}+k^2 \log^2 n)$

Ulam distance

k vs $k+1$

$O(k\log n)$ bit 1-way protocol

Time complexity: $O(n\log n)$

Ulam distance

k vs $k+1$

$\tilde{O}(k\log^2 n)$ bit protocol

Alice and Bob’s time complexity: $O(n\log n)$

Referee’s time complexity: $\tilde{O}(k^2 \log^2 n)$
General Framework: Reduction to Hamming

\[f : \Sigma^n \rightarrow \{0,1\}^{\text{poly}(n)} \]

- \(f(x) \) is efficiently computable
- \(f(x) \) and \(f(y) \) are distinct with high probability
- \(H(f(x), f(y)) < C \cdot \text{ed}(x, y) \) for small \(C \), Small Expansion

There exists efficient decoding procedure \(R \) where given \(f(x) \), \(R \) returns \(x \) whp
General Framework II

The Hamming protocol with parameter $k' = C_k$

Communication Complexity
$\mathcal{O}(C_k \log n)$

Time Complexity
Encoding time $f(x)$
Decoding time $R(f(x))$
Mapping f for Ulam

An injective mapping $f : \Sigma^n \rightarrow \{0,1\}^{\text{poly}(n)}$ such that if $\text{ed}(x,y) = 1$ then $H(f(x), f(y))$ is small.
Mapping f for Ulam

An injective mapping $f : \Sigma^n \rightarrow \{0,1\}^{\text{poly}(n)}$ such that
if $\text{ed}(x,y) = 1$ then $H(f(x), f(y))$ is small

$$f : \Sigma^n \rightarrow \{0,1\}^{n^2}$$

$f(x)_{a,b} = 1$ iff a and b are adjacent in x

If $\text{ed}(x,y) = 1$ then $H(f(x), f(y)) \leq 6$

Decoding is trivial
Mapping f for Edit distance

An injective mapping $f : \Sigma^n \rightarrow \{0,1\}^{\text{poly}(n)}$ such that if $\text{ed}(x,y) = 1$ then $H(f(x), f(y))$ is small

Locally Consistent Parsing CPSV 2000, CM 2002

A hierarchical partitioning of the string x into substrings

$T(x)$
[CM 2002] Based on LCP, there is a mapping $f: \Sigma^n \to [m]^L$

$\varepsilon_d(x, y) = 1$ then $|f(x) - f(y)|_1 = O(\log n \log^* n)$
Based on LCP, there is a mapping $f: \Sigma^n \rightarrow [m]^L$.

$e_d(x,y) = 1$ then $|f(x) - f(y)|_1 = O(\log n \log^* n)$

L is exponential in n

For every possible substring there is an associated coordinate
[CM 2002] Based on LCP, there is a mapping $f : \Sigma^n \rightarrow [m]^{L}$

$\text{ed}(x, y) = 1$ then $|f(x) - f(y)|_1 = O(\log n \log^* n)$

L is exponential in n

For every possible substring there is an associated coordinate

Since f is $2n$-sparse we can use Rabin-Karp Fingerprinting to reduce number of dimensions to $\text{poly}(n)$
Decoding Procedure

After Bob computes $f(x)$, he has a collection of fingerprints.
Decoding Procedure

After Bob computes $f(x)$, he has a collection of fingerprints.

Bob reconstructs the tree $T(x)$ in a top-down manner using the information from fingerprints.

Extracting characters from the fingerprints of the leaves is straightforward.
A simultaneous Protocol for Ulam I

\[f(x) - f(y) \]
A simultaneous Protocol for Ulam I

\[T'(x) \]

\[T'(y) \]

Alice

Bob

Referee

\[f(x) - f(y) \]

\[f(x) \]

\[f(x) \]

\[f(y) \]

\[f(y) \]
The children are missing
Because they appear in $T'(x)$
The children are missing
Because they appear in $T(x)$

The referee finds a matching between the blocks of x and y
A simultaneous Protocol for Ulam III

Since the strings are non-repetitive, The corresponding blocks can be relabeled accordingly With arbitrary non-repeating characters

\[ed(x, y) = ed(x', y') \]
Streaming Implications

Simultaneous Streams

streaming alg ed(x, y) < k ?

permutation x

permutation y
Streaming Implications

Simultaneous Streams

```
iti b e o r n o q f s h j m h w
```

streaming alg

```
ed(x,y) < k ?
```

```
t i b q o r n s h f b c e m z w
```

permutation y

Assymetric Streaming

```
0 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 0 0
```

streaming alg

```
ed(x,y) < k ?
```

```
1 1 0 0 0 1 1 1 1 0 1 1 1 1 0 0 0
```
Open Question

Is there an injective mapping \(f : \Sigma^n \to \{0,1\}^m \) such that \(m = \text{poly}(n) \) and

\[
\text{If } ed(x,y) = 1 \text{ then } H(f(x),f(y)) = O(1) \?
\]

The best upper bound is \(O(\log n \log^* n) \)
Thanks