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Streaming complexity of language recognition (I)

Streaming algorithm for L
- Read a stream w of length n

- Decide if w is in L

- Complexity:   

 # of passes (1, constant, log)

 memory space (polylog, sublinear)

 processing time per symbol (polylog)

1-pass deterministic algorithms
- Generalization of automata

‣ Recognize Regular languages with constant space!

Deterministic Context Free Languages
-  Any DCFL is in SPACE(log2 n)

‣ No obstacle to streaming algorithms with polylog space

- What is the streaming complexity of DCFL?
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sublinear space
polylog time



Dyck languages

Dyck(s)    
- Well-formed expressions over s types of parentheses

- Example:

  (  ( ( ) ) ( )  ) : well-formed       (  ( ( ) ) ( ) ) : ill-formed

Database application
- Well-formedness of large XML file

 Check if document is well-parenthesized (opening tags are correctly closed)
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Walther von Dyck

<?xml version="1.0" encoding="ISO-8859-1"?>
<note>
   <to>Tove</to>
   <from>Jani</from>
   <heading>Reminder</heading>
   <body>Don't forget me this weekend!</body>
</note>Matching tags



Results for Dyck(s)

Fact
- Dyck(1): 1-pass deterministic algorithm with space log n

- Dyck(2): p-passes deterministic algorithms need space Ω(n/p)

- Dyck(s) is (streaming-)reducible to Dyck(2)

‣ From now s=2 and alphabet is (, ), (, )

Results for Dyck(2)
- One pass

 Randomized algorithm with space √(n log n) and one-sided error 1/poly(n)

 Matching lower bound

- More passes in same direction do not help

 Requires space Ω(√n / p) for p passes

 [Jain, Nayak’10]  [Chakrabarti, Cormode, Kondapally, McGregor’10]

- Two passes: Forward and backward 

 Randomized algorithm with space (log n)2  and one-sided error 1/poly(n) 
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Some other languages

Deterministic Context Free Languages
- Grammar S → ( S ) ,  ( S ) ,  ( S ) 

 requires space Ω(n/p) for p passes

  by reduction to Set Disjointness [Radhakrishnan’10]

- Characterization of many languages with polylog space

 [Babu, Limaye, Radhakrishnan, Varma’11] 

Priority Queue
- Valid

 ins(3) ins(1) ins(6) ext(1) ins(2) ext(2) ext(3) ext(6)

- Not valid

 ins(3) ins(1) ins(6) ext(3) ins(2) ext(1) ext(2) ext(6)

- One pass [Chakrabarti, Cormode, Kondapally, McGregor’10]

 Tight randomized algorithm with space Õ(√n)

- Two passes: Forward and backward [François, M’11]

 Randomized algorithm with space poly(log n)
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Streaming complexity of language recognition (2)

External memory for streaming algorithms
- Add read-write auxiliary streams

 [Grohe, Hernich, Koch, Schweikardt‘05’06]

Example
- Grammar S → ( S ) ,  ( S ) ,  ( S ) 

 can be recognized deterministically within

 1 auxiliary stream

 3 passes (2 forward + 1 backward)

 constant space

Open problem
- What is the streaming complexity of Deterministic Context Free languages?
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input stream: read only
auxiliary streams: read-write



Part 1
Streaming algorithms for Dyck(2)



Height

Definition
- Height of w = # opening parentheses - # closing parentheses

- Online computable with log space

 height of  “w(”  =  height of w + 1

 height of  “w)”  =  height of w - 1

Characterization
- If w is in Dyck(2) then  

 (*) height of w = 0  and   height of each prefix of w ≥ 0

- Converse only true for Dyck(1)  

 → One-pass deterministic algorithm for Dyck(1) with space log n

- Assume for now that w satisfies (*)
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height
(of prefix)

length (of prefix)



Small height

Stack automaton

Simple algorithm
- One-pass algorithm for Dyck(2) with space max height

Observation
- Small height ⇒ small space 
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Maximal height

Connexion to string matching
- w = u v      where u : upsteps   v : downsteps

- uv  is well-formed  iff  types of vi = types of un-i

Linear hashing à la Rabin-Karp
- p: prime number of order poly(n),  a: random number mod p

 hash(wi) =  + aheight(w[1,i-1])  mod p   if wi=’(‘

                                  - aheight(w[1,i])    mod p   if wi=’)‘
                                  0                   mod p   if wi=’(‘, ’)‘

 hash(w) = ∑i hash(wi) 

- Online computable with log space (and randomization)

- Example:  w = “( ( ) )”     hash(w) = 1 + 0 - a -0

Fact
- If uv is well-formed then   hash(uv) = 0

- If uv is  ill-formed   then   hash(uv) ≠ 0    w.h.p. (Schwartz-Zippel lemma)
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Generalization: first attempt

Fact
- w is well-formed  →  hash(w) = 0

- But converse is wrong!

Example
- w = ( ( ) ( ) ) is well-formed  and   hash(w) = 1+0-0+a-a-1 = 0

- w’ = ( ( ) ( ) ) is ill-formed but hash(w’) = 1+0-a+a-0-1 = 0

                                (because of linearity)

Rule
- Never hash same-height ill-formed pairs together!

Lemma (Schwartz-Zippel)
- If w has exactly one ill-formed pair at some height 

 then hash(w)≠0 w.h.p.
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Generalization: few alternations

2 alternations
- w = uv xy v‘     where u,x : upsteps   v,y,v’ : downsteps

- One pass algorithm

 h1 ← hash(uv) 

 h2 ← hash(xy)

 If h2 ≠ 0 reject

 h1 ← h1 + hash(v’)  

 If h1 ≠ 0 reject

Few alternations
- If k alternations, algorithm uses a Stack of  ≤ k hash values, and

 accepts if w is well-formed

 rejects w.h.p. if w is ill-formed
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Keep track of height while reading
Keep track of # of missing downsteps



Reduce number of alternations

Local checks/simplifications
- Read a block of m letters

- Simplify (and check)

Fact
- Requires space m

- At most one alternation per simplified block

 # of remaining alternations ≤ n/m

Conclusion
- 1-pass algorithm with space √(n log n)      

 Block size    : m= √( n log n )  

 Stack size : n/m    Size of stack item : log n
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Intuition for the forward & backward pass

Left to right
- Upsteps in B are all matched after B'   → Stack is not increasing

Right to left
- Some upsteps in B' remain unmatched after B  → Stack is increasing

- Idea: merge B, B’ by adding their hash balues → Stack is not increasing

  hash(BB’)=hash(B)+hash(B’)

 → could introduce several ill-formed pairs at same height 

- Legal combination if blocks B, B’ exist both directions

 Then each pairs between B and B’ are checked right after reading BB’

 either during forward pass or forward pass
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Dynamic evolution
- Block decomposition Binary expansion of current position

- When blocks B & B’ are combined, combine their hash values hBB’ = hB+hB’

- Assume n=2k (padding) :  All blocks are considered exactly once in each direction

- Maximum # of current blocks ≤ log n

Small block decomposition 15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 length

block size
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Full algorithm

Unidirectional algorihm
- Recurse on 1st half-block:  (maybe) one new hash value h1

- Recurse on 2nd half-block: (maybe) one new hash value h2

- Combine: if two new hash values h1, h2, replace them by h1+h2

Bidirectional
- Do left-to-right algorithm

- Do right-to-left algorithm

- Accept iff both succeed

Theorem
- The bidirectional algorithm recognizes Dyck(2) 

 with space O((log n)2) and time polylog(n)

Analysis
- Correctness

 Any pair of matching letters will be checked in one of the two executions

- Memory

 log(n) per stack item

 Stack has depth log(n)
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1-pass lower bound: !  (" n)

Hard instance
- String of size  Θ(n):  √n interleaved slices of size Θ(√n)

 Maximize the stack size of the 1-pass algorithm

‣ Forbid any possible simplifications on the stack

-             might be  ( ) ( ) or ( ) ( ) or ( ) ( ) or ( ) ( )

-
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Cannot store information
for all previous upsteps

Cannot store information
for all cavities

√n

√n

√n

√n



Sketch of the proof

- Step 1: Reduce to the study of one slice from the CC point of view

- Step 2: Reduce to 2-partite problem INDEX

 Alice: x !  {0,1}" n      Bob: x[1,k-1], b! {0,1}

 Goal: Check that b=x[k] 

 

Information cost approach 18
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Sketch of the proof

- Lemma:  Any 1-pass streaming algorithm with space o(√n) gives a protocol 

 with 1 round of messages (Alice → Bob → Alice) such that

 |MA| = o(√n)   and  I(k,b : MB | x) = o(1)

- Lemma:  Any 1-round protocol satisfies |MA| = Ω(√n)   or  I(k,b : MB | x) = Ω(1)

Information cost approach 19

Distribution over uniform inputs such that b=x[k]
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Part 2
Streaming algorithms for XML languages



Trees encoded as well-formed XML sequences

Trees
- Labelled, unranked, oriented (root has label r)

From trees to XML sequences
- Depth first traversal

 tree T with n nodes → word w(T) with n tags

- Rules

 1st visit of node with label a → opening tag <a>

 2nd visit of node with label a → closing tag </a>

- XML sequence is well-formed

Conversely
- To every well-formed XML sequence 

 corresponds a unique tree
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What is XML?

XML document: sequence of opening and closing tags

<r>
<b>

<a></a>
<a></a>
<c></c>

</b>
<b></b>
<b>

<a></a>
<a></a>

</b>
<c></c>

</ r>

Notation: rbaaaaccbbbbaaaabccr
Depth first tree traversal: down step gives opening tag, up step gives
closing tag

Christian Konrad Streaming 4 / 1
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Simplified notation:



Checking XML sequence

Well-formedness
- same as well parenthesized

Validity
- Document Type Definition (DTD) specifies the children’s label of each node by 

some regular expression (automaton)
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DTD-Validity of XML files

Validity: is checked wrt. a DTD (Document Type Definition)

r ! b⇤c+

b ! a⇤c?|✏
a ! ✏

c ! ✏

Di�culty: relate each label to labels of its children
Labels are scattered all over the document:

v

v
1

v
2

. . . vk

t
1

t
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. . . . . .

v v
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v
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v
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vk vk v. . .

not valid
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DTD:

valid

not valid



DTD-Validity

Problem
- Fix some DTD D

- Input: Tree T given as a stream of its (well-formed) XLM sequence w(T)

- Goal: Decide if T verifies DTD D

- Input size: number n of nodes of T

Intuition
- Relate each node to labels if its children

- Difficulty: Labels are scattered over the XML sequence

23
DTD-Validity of XML Þles

Validity: is checked wrt. a DTD (DocumentType DeÞnition)

r ! b! c+

b ! a! c?|!

a ! !

c ! !

Di ! culty: relate each label to labels of its children
Labels arescatteredall over the document:

v

v1 v2 . . . vk

t1 t2 tk
. . . . . .

v v1 v1v2 v2v3 vk" 1vk vk v. . .

not valid

Christian Konrad Streaming 13 / 1



Hardness of checking DTD-validity

Theorem
- Checking validity requires space Ω(n/p) for p passes

Proof
- Reduction to Set Disjointness
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Hardness of Checking DTD-Validity

Hardness: Checking Validity requires linear space

Hard instance:

DTD:
r ! 0r1 | 1r0 | 0r0 | !
0, 1 ! !

1

0

0

1

0

0

1

1

1

0

r

r

r

r

r

r

r11r00r00r11r . . . 00r r00. . . r11r11r11r00r

Reduction: One-way two-party Set-Disjointness in Comm. Complexity

M!" !" DISJ (a, b) =
!

i (ai # bi )

a $ { 0, 1} n b $ { 0, 1} n

Fact: |M| $ ! (n), for randomized protocols with bounded error
Christian Konrad Streaming 14 / 1



But...

DTD-validity on 2-ranked trees
- One pass

 Deterministic algorithm with space Õ(√n)

 Optimal, but not known to be optimal for binary trees

- Two passes: Forward and backward 

 Deterministic algorithm with space O(log n)2

Using external memory
- Any unranked tree T can be matched to a binary tree T’ such that

 T satisfies some DTD D iff  T’ satisfies another DTD D’

 The XML sequence w(T’) can be computed using w(T) with

  3 auxiliary streams

  space O(log n)

  O(log n) passes

- Therefore DTD-validity can be decided within same streaming complexity
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Special case of binary trees, one pass

Goal
- For all internal nodes p with children u, v

 check (labels of) p, u, v

Block algorithm
- Process XML sequence in blocks of size ≈√n

- For all #v in a block

 Verify #v if p or p! is also in that block

 Otherwise store #v and verify it later when p! is seen

Lemma: At most one #v per block is differed

Space complexity: Block size + # of deferred verifications ≈√n

Proof of lemma
- Assume #’v’ arrives before #v and cannot be verified

 Then p!’ must be between v’ and #

 Contradiction
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Binary Trees - Validity in one pass andO(
!

N logN) space

Goal: " internal nodesp with childrenu, v call check(p, u, v)

p

u v

subtree ofu subtree ofv

. . . pu . . . . . . uv. . . . . . v p . . .

Block Algorithm: Process XML Þle in blocks of size#
!

N

For all uv in block: verifyuv if p or p is also in that block,
otherwise store and verify later whenp is seen

Space complexity: Block size + # defered veriÞcations

Lemma: VeriÞcation of at most oneuv per block is defered

Suppose$ u!v! beforeuv that can not be veriÞed

p puvu!v!

p

u v

p!

u! v!Then p! in block betweenu!v! and uv
Christian Konrad Streaming 17 / 1
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Lower bound for 2-ranked trees

Information cost approach
- Reduce to a 2-partite communication problem

- Alice: x !  {0,1}" n 

- Bob: x[1,k-1]

- Goal: Check that x[k-1]=x[k]

Lemma
- Any 1-pass streaming algorithm with space o(√n) gives a protocol 

 with 1 round of messages (Alice → Bob → Alice) such that

 |MA| = o(√n)   and  I(k : MB | x) = o(1)

Lemma
- Any 1-round protocol satisfies |MA| = Ω(√n)   or  I(k : MB | x) = Ω(1)

Remark
- Proof of lemma does not apply for binary trees

- Similar obstacles for Priority Queue with time stamps

 ins(3; 1) ins(1; 2) ins(6; 3) ext(1; 2) ins(2; 4) ext(2; 4) ext(3; 1) ext(6; 3)

27

Distribution over inputs 
such that x[k-1]=x[k]

Alice Alice

Bob

x[1,k-1]R x[1,k-1]

x[k,√n]R x[k,√n]

x[k]

x[k-1]x[k-1]

MA MB



Conclusion - Open problems

Many languages with
- one-pass streaming algorithm with space Õ(√n)

- p-pass streaming algorithms require space Ω(√n/p)

- bidirectional two-pass streaming algorithm with space polylog(n)

- Can we characterize those languages?

Constant auxiliary streams
- DTD-Validity with O(log n) passes and space

- What about other DCF languages, such as Visibly Pushdown languages?
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