On the Streaming Complexity
of Language Recognition

Frederic Magniez, Universite Paris Diderot

- Recognizing well-parenthesized expressions in the streaming model
with Claire Mathieu (ENS Paris) ,Ashwin Nayak (U.Waterloo). STOC’|0.

- Validating XML Documents in the Streaming Model with External Memory
with Christian Konrad (U. Paris Diderot). ICDT’ | 2.

Streaming complexity of language recognition (l)

Streaming algorithm for L

-
& o '

1

- Read a stream w of length n

- DecideifwisinL
- Complexity:
of passes (|, constant, log)

memory space (polylog, sublinear sublinear space {
yoP (polylog) polylog time ®

processing time per symbol (polylog)

| -pass deterministic algorithms

- Generalization of automata

P Recognize Regular languages with constant space!

Deterministic Context Free Languages
- Any DCFL is in SPACE(log? n)

p No obstacle to streaming algorithms with polylog space

- What is the streaming complexity of DCFL!?

Dyck languages 3

Dyck(s)

- Well-formed expressions over s types of parentheses

- Example:

((())()):well-formed (((O)) () :ill-formed

I i Walth Dyck
Database application alther von Dyc

- Well-formedness of large XML file

Check if document is well-parenthesized (opening tags are correctly closed)

<?xml version="1.0" encoding="ISO-8859-1"?>
<note>
<to>Tove</to>

<from>Jani</from>
/ <heading>Remi heading>
on't forget me this weekend!</body>

Matching tags </note>

Results for Dyck(s)

Fact

- Dyck(l): I-pass deterministic algorithm with space log n

- Dyck(2): p-passes deterministic algorithms need space ()(n/p)
- Dyck(s) is (streaming-)reducible to Dyck(2)

p From now s=2 and alphabetis (,), (,)

Results for Dyck(2)

- One pass
Randomized algorithm with space +/(n log n) and one-sided error |/poly(n)
Matching lower bound
- More passes in same direction do not help
Requires space Q(+/n / p) for p passes
[Jain, Nayak’10] [Chakrabarti, Cormode, Kondapally, McGregor’|0]

- Two passes: Forward and backward

Randomized algorithm with space (log n)?> and one-sided error |/poly(n)

Some other languages

Deterministic Context Free Languages
= GrammarS — (S), (S), (9S)
requires space ()(n/p) for p passes
by reduction to Set Disjointness [Radhakrishnan’| 0]

- Characterization of many languages with polylog space

[Babu, Limaye, Radhakrishnan,Varma’l I]

Priority Queue
- Valid
ins(3) ins(l) ins(6) ext(l) ins(2) ext(2) ext(3) ext(6)
- Not valid
ins(3) ins(1) ins(6) ext(3) ins(2) ext(l) ext(2) ext(6)
- One pass [Chakrabarti, Cormode, Kondapally, McGregor’| 0]
Tight randomized algorithm with space O(+/n)

- Two passes: Forward and backward [Francois, M’ | |]

Randomized algorithm with space poly(log n)

Streaming complexity of language recognition (2)

External memory for streaming algorithms

- Add read-write auxiliary streams
[Grohe, Hernich, Koch, Schweikardt'05’06]

auxiliary streams: read-write

input stream: read only
— =
— =
— f =
—)
Example T

= Grammar S — (S), (S), (9S)
can be recognized deterministically within
| auxiliary stream
3 passes (2 forward + | backward)

constant space

Open problem

- What is the streaming complexity of Deterministic Context Free languages?

Part |

Streaming algorithms for Dyck(2)

Height

Definition

- Height of w = # opening parentheses - # closing parentheses

height
(of prefix)

length (of prefix)
- Online computable with log space

height of “w(” = height of w + |
height of “w)” = height of w = |

Characterization
- If wis in Dyck(2) then
(*) height of w = 0 and height of each prefix of w = 0
- Converse only true for Dyck(1)

— One-pass deterministic algorithm for Dyck(|) with space log n

- Assume for now that w satisfies (*)

Small height

Stack automaton

read (: push (
read (:push (

read) : pop (
read) : pop (

start others
accept
Simple algorithm

- One-pass algorithm for Dyck(2) with space max height

Observation

- Small height = small space

height T

YAVAVAVAVAVAVAN X

length

Maximal height 10

Connexion to string matching height |

- w=uv whereu:upsteps V:downsteps

- uv is well-formed iff types of vi = types of un.

Linear hashing a la Rabin-Karp
- p:prime number of order poly(n), a: random number mod p
hash(wi) = + aheghtWILi-l) mod p if wi="(’

- aheightWILi]) mod p if wi=)*
0 mod p if wi='(,’)’

hash(w) = > hash(wi)
- Online computable with log space (and randomization)
- Example: w=“(())” hash(w)=1+0-a-0

Fact

- If uv is well-formed then hash(uv) =0

- Ifuvis ill-formed then hash(uv) # 0 w.h.p. (Schwartz-Zippel lemma)

Generalization: first attempt

Fact

- wis well-formed — hash(w) =0

- But converse is wrong!

Example
- w=(()()) is well-formed and hash(w) = [+0-0O+a-a-1 =0

- W =(()())isill-formed but hash(w’) = |+0=-a+a-0-1 =0

(because of linearity)

Rule

- Never hash same-height ill-formed pairs together!

Lemma (Schwartz-Zippel)

- If w has exactly one ill-formed pair at some height
then hash(w)#0 w.h.p.

35

Generalization: few alternations 12

2 alternations

- W=uvxyVv where ux:upsteps VY,V :downsteps

height

- One pass algorithm
hl < hash(uv)
h2 « hash(xy)
If h2 #+ O reject
hl < hl + hash(v)
If hl # 0 reject

Keep track of height while reading
Keep track of # of missing downsteps

Few alternations

- If k alternations, algorithm uses a Stack of < k hash values, and
accepts if w is well-formed

rejects w.h.p. if w is ill-formed

Reduce number of alternations

13

Local checks/simplifications

- Read a block of m letters

- Simplify (and check)

N/

Fact

- Requires space m
- At most one alternation per simplified block

of remaining alternations < n/m

Conclusion
- |-pass algorithm with space +/(n log n)
Block size :m=+/(nlogn)

Stack size : n/m Size of stack item :log n

Intuition for the forward & backward pass

| 4

Left to right

- Upsteps in B are all matched after B' — Stack is not increasing

Right to left

- Some upsteps in B' remain unmatched after B — Stack is increasing
- ldea: merge B, B’ by adding their hash balues — Stack is not increasing
hash(BB’)=hash(B)+hash(B’)
— could introduce several ill-formed pairs at same height
- Legal combination if blocks B, B’ exist both directions

Then each pairs between B and B’ are checked right after reading BB’

either during forward pass or forward pass

Small block decomposition 15

Dynamic evolution

- Block decomposition Binary expansion of current position
A
block size

>
|l 2 3 4 5 6 7 8 9 10 Il 12 I3 14 15 16 length

- When blocks B & B’ are combined, combine their hash values hgg = hg+hg’
- Assume n=2% (padding) : All blocks are considered exactly once in each direction

- Maximum # of current blocks < log n

Small block decomposition 15

Dynamic evolution

- Block decomposition Binary expansion of current position
A
block size

>
|l 2 3 4 5 6 7 8 9 10 Il 12 I3 14 15 16 length

- When blocks B & B’ are combined, combine their hash values hgg = hg+hg’
- Assume n=2% (padding) : All blocks are considered exactly once in each direction

- Maximum # of current blocks < log n

Small block decomposition 15

Dynamic evolution

- Block decomposition Binary expansion of current position
A
block size

>
|l 2 3 4 5 6 7 8 9 10 Il 12 I3 14 15 16 length

- When blocks B & B’ are combined, combine their hash values hgg = hg+hg’
- Assume n=2% (padding) : All blocks are considered exactly once in each direction

- Maximum # of current blocks < log n

Small block decomposition 15

Dynamic evolution

- Block decomposition Binary expansion of current position
A
block size

>
|l 2 3 4 5 6 7 8 9 10 Il 12 I3 14 15 16 length

- When blocks B & B’ are combined, combine their hash values hgg = hg+hg’
- Assume n=2% (padding) : All blocks are considered exactly once in each direction

- Maximum # of current blocks < log n

Small block decomposition 15

Dynamic evolution

- Block decomposition Binary expansion of current position
A
block size

>
|l 2 3 4 5 6 7 8 9 10 Il 12 I3 14 15 16 length

- When blocks B & B’ are combined, combine their hash values hgg = hg+hg’
- Assume n=2% (padding) : All blocks are considered exactly once in each direction

- Maximum # of current blocks < log n

Small block decomposition 15

Dynamic evolution

- Block decomposition Binary expansion of current position
A
block size

>
|l 2 3 4 5 6 7 8 9 10 Il 12 I3 14 15 16 length

- When blocks B & B’ are combined, combine their hash values hgg = hg+hg’
- Assume n=2% (padding) : All blocks are considered exactly once in each direction

- Maximum # of current blocks < log n

Small block decomposition 15

Dynamic evolution

- Block decomposition Binary expansion of current position
A
block size

>
|l 2 3 4 5 6 7 8 9 10 Il 12 I3 14 15 16 length

- When blocks B & B’ are combined, combine their hash values hgg = hg+hg’
- Assume n=2% (padding) : All blocks are considered exactly once in each direction

- Maximum # of current blocks < log n

Small block decomposition 15

Dynamic evolution

- Block decomposition Binary expansion of current position
A

block size —_—

>
|l 2 3 4 5 6 7 8 9 10 Il 12 I3 14 |5 16 length

- When blocks B & B’ are combined, combine their hash values hgs' = hg+hp
- Assume n=2% (padding) : All blocks are considered exactly once in each direction

- Maximum # of current blocks < log n

Small block decomposition 15

Dynamic evolution

- Block decomposition Binary expansion of current position
A

block size —_—

>
|l 2 3 4 5 6 7 8 9 10 Il 12 I3 14 |5 16 length

- When blocks B & B’ are combined, combine their hash values hgpg: = hg+hp
- Assume n=2% (padding) : All blocks are considered exactly once in each direction

- Maximum # of current blocks < log n

Small block decomposition 15

Dynamic evolution

- Block decomposition Binary expansion of current position
A

block size —_—

>
|l 2 3 4 5 6 7 8 9 10 Il 12 I3 14 |5 16 length

- When blocks B & B’ are combined, combine their hash values hgpg: = hg+hp
- Assume n=2% (padding) : All blocks are considered exactly once in each direction

- Maximum # of current blocks < log n

Small block decomposition 15

Dynamic evolution

- Block decomposition Binary expansion of current position

—

block size

>
Il 2 3 4 5 6 7 8 9 10 Il 12 13 14 15 16 Ilength

- When blocks B & B’ are combined, combine their hash values hgpg: = hg+hp
- Assume n=2% (padding) : All blocks are considered exactly once in each direction

- Maximum # of current blocks < log n

Small block decomposition 15

Dynamic evolution

- Block decomposition Binary expansion of current position

—_— s

block size

>
Il 2 3 4 5 6 7 8 9 10 Il 12 13 14 15 16 Ilength

- When blocks B & B’ are combined, combine their hash values hgpg: = hg+hp
- Assume n=2% (padding) : All blocks are considered exactly once in each direction

- Maximum # of current blocks < log n

Full algorithm

|6

Unidirectional algorihm

- Recurse on Ist half-block: (maybe) one new hash value hl
- Recurse on 2nd half-block: (maybe) one new hash value h2

- Combine: if two new hash values hl, h2, replace them by h|+h2

Bidirectional

- Do left-to-right algorithm
- Do right-to-left algorithm
- Accept iff both succeed

Theorem

- The bidirectional algorithm recognizes Dyck(2)
with space O((log n)?) and time polylog(n)
Analysis

- Correctness

Any pair of matching letters will be checked in one of the two executions

- Memory
log(n) per stack item

Stack has depth log(n)

|-pass lower bound:! (" n) 17

Hard instance

- String of size O(n): +/n interleaved slices of size O(+/n)
Maximize the stack size of the |-pass algorithm

p Forbid any possible simplifications on the stack

- eeee Mmightbe ()()or()()or()()or()()

Cannot store information
for all cavities

Cannot store information
for all previous upsteps\;

\/n \

Information cost approach

|18

Sketch of the proof

well-formed

MA Bob .
’ \
/
o /
PR ’
3 ’, N /
¢ Vd N s
; , -
X /7
3 /7
/7
/7

well-formed

~
~
~
N
N
N
A
A
AN
A Y
AN
N .
. Alice
A Y
AN
N
AN
A Y

N
N

\ well-formed

- Step |:Reduce to the study of one slice from the CC point of view

- Step 2: Reduce to 2-partite problem INDEX Bob
Alice:x ! {0,1}'" Bob:x[I,k-1],b! {0,1}
Goal: Check that b=x[k]

Information cost approach 19

Sketch of the proof

well-formed

Ma Bob .
N
’
h ’
o~ ’
. ’ A ’
X 7’ N_vz
r Vi -
X 7
; ’
’
’

well-formed

-
~
~
~
Y
N
A
AN
AN
A Y
S L]
AN
AN
AN
N
AN
N

Alice

\ well-formed

- Lemma: Any |-pass streaming algorithm with space o(+/n) gives a protocol

with | round of messages (Alice = Bob — Alice) such that
IMa| = o(+/n) and I(k,b : Mg | x) = o(l)

- Lemma: Any |l-round protocoNatisfies [Ma| = Q(+/n) or_lI(k,b : Mg | x) = Q(I)

//

Distribution over uniform inputs such that b=x[k]

Part 2

Streaming algorithms for XML languages

Trees encoded as well-formed XML sequences 2|

Trees

- Labelled, unranked, oriented (root has label r) (b) (b) (b) (c)
From trees to XML sequences

- Depth first traversal @ @ (© @ @

tree T with n nodes = word w(T) with n tags

- Rules < r>< 0>
| st visit of node with label a = opening tag <a> <ax< /a>
. , , <ax< /a>
2nd visit of node with label a = closing tag <o [o>
- XML sequence is well-formed
<bx< /b>
< b>
<ax< /a>
Conversely <ax la>
- To every well-formed XML sequence z/CE: o>
corresponds a unique tree <[r>

Simplified notation: rbaaaaccbb baaaabcer

Checking XML sequence

22

Well-formedness

- same as well parenthesized

Validity

- Document Type Definition (DTD) specifies the children’s label of each node by
some regular expression (automaton)

b*c* (N

a“c?le i
vali

¢ (b) ® ©® ©

DTD:

O L T =

L4

€

not valid

DTD-Validity

Problem
= Fixsome DTD D

- Input:Tree T given as a stream of its (well-formed) XLM sequence w(T)
- Goal: Decide if T verifies DTD D

- Input size: number n of nodes of T

Intuition

- Relate each node to labels if its children

- Difficulty: Labels are scattered over the XML sequence

TN,

Hardness of checking DTD-validity

Theorem
- Checking validity requires space ()(n/p) for p passes

Proof

- Reduction to Set Disjointness

Hard instance: N
17 o 0
SOUNT
DTD: AR
r! Orl|1rO|OrO|! 0 r 1
- 1] 1r0] 0r0| PN
, . . 1 r 1
1IN
0" r 0

But...

25

D TD-validity on 2-ranked trees

- One pass
Deterministic algorithm with space O(+/n)
Optimal, but not known to be optimal for binary trees

- Two passes: Forward and backward
Deterministic algorithm with space O(log n)?

Using external memory

- Any unranked tree T can be matched to a binary tree T’ such that
T satisfies some DTD D iff T’ satisfies another DTD D’
The XML sequence w(T’) can be computed using w(T) with
3 auxiliary streams
space O(log n)
O(log n) passes

- Therefore DTD-validity can be decided within same streaming complexity

Special case of binary trees, one pass 26

Goal P p\

- For all internal nodes p with children u, v i

check (labels of) p, u, v
. subtree ofu subtree ofv
Block algorithm

- Process XML sequence in blocks of size =~+/n
- For all #v in a block
Verify #v if p or plis also in that block

Otherwise store #v and verify it later when plis seen

Lemma: At most one #v per block is differed
Space complexity: Block size + # of deferred verifications =~+/n

d g
U/ \V

Proof of lemma

- Assume #'V’ arrives before #v and cannot be verified

—
P u'v! av

ol
©

Then p! must be between v’ and #

Contradiction

Lower bound for 2-ranked trees 27

Information cost approach

- Reduce to a 2-partite communication problem x[k f/n]R
- Alice:x ! {01} Alice
- Bob:x[I,k-1] x[1,k-17%

- Goal: Check that x[k-1]=x[k]

Lemma

- Any |-pass streaming algorithm with space o(+/n) gives a protocol
with | round of messages (Alice = Bob — Alice) such that
IMa| = o(+/n) and I(k :Mg | x) = o(l)
Lemma - __Distribution over inputs

«— such that x[k-1]=x[k]

- Any l-round protocol satisfies [Ma| = Q(v/n) or I(k:Mg|x) = Q(l)

Remark

- Proof of lemma does not apply for binary trees

- Similar obstacles for Priority Queue with time stamps
ins(3; 1) ins(1;2) ins(6; 3) ext(l;2) ins(2;4) ext(2;4) ext(3; |) ext(6; 3)

Conclusion - Open problems

28

Many languages with

one-pass streaming algorithm with space O(+/n)
p-pass streaming algorithms require space Q(~/n/p)
bidirectional two-pass streaming algorithm with space polylog(n)

Can we characterize those languages?

Constant auxiliary streams

DTD-Validity with O(log n) passes and space
What about other DCF languages, such as Visibly Pushdown languages?

