Coresets for *k*-means clustering

Melanie Schmidt, TU Dortmund

Resource-aware Machine Learning - International Summer School

02.10.2014

Introduction	
000000	

Introduction	
000000	

BICO 0000000

Coresets and k-means

Coresets and k-means

Coresets and k-means

Coresets and k-means

Coresets and k-means

Coresets and k-means

Introduction	
0000000	

Whether a summary / compressed representation / coreset is good depends on the objective

Whether a summary / compressed representation / coreset is good depends on the objective

A coreset represents input data

- with regard to an objective function
- (e.g.) in order to solve an optimization problem

Whether a summary / compressed representation / coreset is good depends on the objective

A coreset represents input data

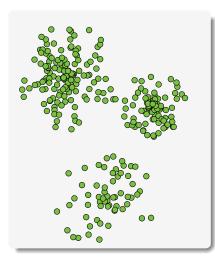
- with regard to an objective function
- (e.g.) in order to solve an optimization problem

Notice that

- there is no common definition
- many approaches can be viewed as a coreset

Coresets and k-means

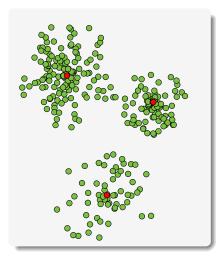
Coresets and k-means



The *k*-means Problem

• Given a point set $P \subseteq \mathbb{R}^n$,

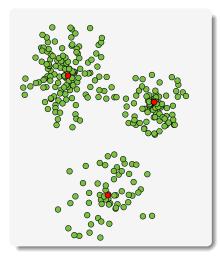
Coresets and k-means



The *k*-means Problem

- Given a point set $P \subseteq \mathbb{R}^n$,
- compute a set $C \subseteq \mathbb{R}^n$ with |C| = k centers

Coresets and k-means



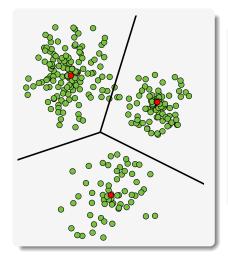
The *k*-means Problem

- Given a point set $P \subseteq \mathbb{R}^n$,
- compute a set C ⊆ ℝⁿ with |C| = k centers
- which minimizes cost(P, C)

$$=\sum_{\boldsymbol{\rho}\in\boldsymbol{P}}\min_{\boldsymbol{c}\in\boldsymbol{C}}||\boldsymbol{c}-\boldsymbol{\rho}||^2,$$

the sum of the squared distances.

Coresets and k-means



The *k*-means Problem

- Given a point set $P \subseteq \mathbb{R}^n$,
- compute a set C ⊆ ℝⁿ with |C| = k centers
- which minimizes cost(P, C)

$$=\sum_{\boldsymbol{\rho}\in\boldsymbol{P}}\min_{\boldsymbol{c}\in\boldsymbol{C}}||\boldsymbol{c}-\boldsymbol{\rho}||^2,$$

the sum of the squared distances.

Coresets and k-means



The *k*-means Problem

- Given a point set $P \subseteq \mathbb{R}^n$,
- compute a set C ⊆ ℝⁿ with |C| = k centers
- which minimizes cost(P, C)

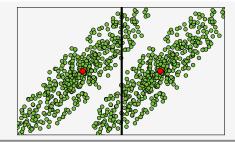
$$=\sum_{\boldsymbol{\rho}\in\boldsymbol{P}}\min_{\boldsymbol{c}\in\boldsymbol{C}}||\boldsymbol{c}-\boldsymbol{\rho}||^2,$$

the sum of the squared distances.

|| · || is the Euclidean norm

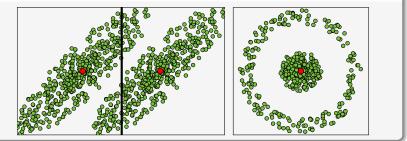
Coresets and k-means

What k-means cannot cluster



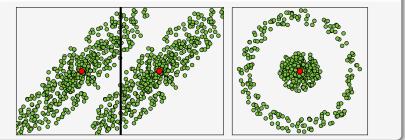
Coresets and k-means

What *k*-means cannot cluster



Coresets and k-means

What k-means cannot cluster



In these cases, other objective functions might be better suited

Coreset (idea)

- compute a smaller weighted point set
- that preserves the k-means objective,
- i.e., the sum of the weighted squared distances is similar
- for all sets of k centers

Coreset (idea)

- compute a smaller weighted point set
- that preserves the k-means objective,
- i.e., the sum of the weighted squared distances is similar
- for all sets of k centers

Why for all centers?

• coreset and input should look alike for *k*-means

Coreset (idea)

- compute a smaller weighted point set
- that preserves the k-means objective,
- i.e., the sum of the weighted squared distances is similar
- for all sets of k centers

Why for all centers?

- coreset and input should look alike for *k*-means
- assume optimizing over the possible centers
- if the cost is underestimated for certain center sets, then they might be mistakenly assumed to be optimal

Small summary of the data that preserves the cost function

Coresets (Har-Peled, Mazumdar)

Given a set of points $P \in \mathbb{R}^n$, a weighted set *S* is a (k, ϵ) -coreset if for all sets $C \subset \mathbb{R}^n$ of *k* centers it holds that

 $|\operatorname{cost}_w(S, C) - \operatorname{cost}(P, C)| \le \epsilon \operatorname{cost}(P, C)$

where $\operatorname{cost}_w(S, C) = \sum_{p \in S} \min_{c \in C} w(p) ||p - c||^2$.

Small summary of the data that preserves the cost function

Coresets (Har-Peled, Mazumdar)

Given a set of points $P \in \mathbb{R}^n$, a weighted set *S* is a (k, ϵ) -coreset if for all sets $C \subset \mathbb{R}^n$ of *k* centers it holds that

$$|\operatorname{cost}_w(S, C) - \operatorname{cost}(P, C)| \le \epsilon \operatorname{cost}(P, C)$$

where
$$\operatorname{cost}_w(S, C) = \sum_{p \in S} \min_{c \in C} w(p) ||p - c||^2$$
.

Small summary of the data that preserves the cost function

Coresets (Har-Peled, Mazumdar)

Given a set of points $P \in \mathbb{R}^n$, a weighted set *S* is a (k, ϵ) -coreset if for all sets $C \subset \mathbb{R}^n$ of *k* centers it holds that

$$|\operatorname{cost}_w(S, C) - \operatorname{cost}(P, C)| \le \epsilon \operatorname{cost}(P, C)$$

where
$$\operatorname{cost}_w(S, C) = \sum_{p \in S} \min_{c \in C} w(p) ||p - c||^2$$
.

Small summary of the data that preserves the cost function

Coresets (Har-Peled, Mazumdar)

Given a set of points $P \in \mathbb{R}^n$, a weighted set *S* is a (k, ϵ) -coreset if for all sets $C \subset \mathbb{R}^n$ of *k* centers it holds that

$$|\operatorname{cost}_w(S, C) - \operatorname{cost}(P, C)| \le \epsilon \operatorname{cost}(P, C)$$

where
$$\operatorname{cost}_w(S, C) = \sum_{p \in S} \min_{c \in C} w(p) ||p - c||^2$$
.

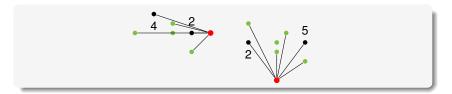
Small summary of the data that preserves the cost function

Coresets (Har-Peled, Mazumdar)

Given a set of points $P \in \mathbb{R}^n$, a weighted set *S* is a (k, ϵ) -coreset if for all sets $C \subset \mathbb{R}^n$ of *k* centers it holds that

$$|\operatorname{cost}_{w}(S, C) - \operatorname{cost}(P, C)| \le \epsilon \operatorname{cost}(P, C)$$

where
$$\operatorname{cost}_w(S, C) = \sum_{p \in S} \min_{c \in C} w(p) ||p - c||^2$$
.



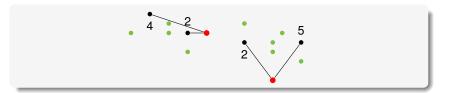
Small summary of the data that preserves the cost function

Coresets (Har-Peled, Mazumdar)

Given a set of points $P \in \mathbb{R}^n$, a weighted set *S* is a (k, ϵ) -coreset if for all sets $C \subset \mathbb{R}^n$ of *k* centers it holds that

$$|\operatorname{cost}_w(S, C) - \operatorname{cost}(P, C)| \le \epsilon \operatorname{cost}(P, C)$$

where
$$\operatorname{cost}_w(S, C) = \sum_{p \in S} \min_{c \in C} w(p) ||p - c||^2$$
.



Coreset constructions

- '01: Agarwal, Har-Peled and Varadarajan: Coreset concept
- '02: Bădoiu, Har-Peled and Indyk: First coreset construction for clustering problems
- '04: Har-Peled and Mazumdar, Coreset of size $O(k\epsilon^{-d} \log n)$, maintainable in data streams
- '05: Har-Peled and Kushal, Coreset of size $\mathcal{O}(k^3 \varepsilon^{-(d+1)})$
- '05: Frahling and Sohler: Coreset of size $O(k\epsilon^{-d} \log n)$, insertion-deletion data streams
- '06: Chen: Coresets for metric and Euclidean *k*-median and *k*-means, polynomial in *d*, log *n* and e^{-1}
- '07: Feldman, Monemizadeh, Sohler: weak coreset $poly(k, \epsilon^{-1})$
- '10: Langberg, Schulman: $\tilde{O}(d^2k^3/\varepsilon^2)$
- '13: Feldman, S., Sohler: $(k/\varepsilon)^{\mathcal{O}(1)}$

Outline

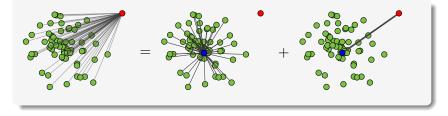
- Different techniques to construct coresets
- Interlude: Dimensionality reduction
- A practically efficient coreset construction

Technique 0: The magic formula for *k*-means Zhang, Ramakrishnan, Livny, 1996

For every $P \subset \mathbb{R}^d$ and $z \in \mathbb{R}^d$,

$$\sum_{x \in P} ||x - z||^2 = \sum_{x \in P} ||x - \mu(P)||^2 + |P| \cdot ||\mu(P) - z||^2$$

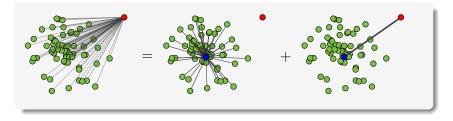
where $\mu(P) = \sum_{x \in P} x/|P|$ is the centroid of *P*.



Technique 0: The magic formula for k-means

Implications

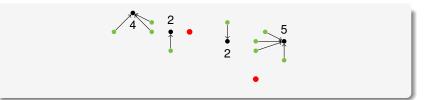
- centroid is always the optimal 1-means solution
- (much nicer situation than for 1-median!)
- centroid (plus constant) is an $(1, \varepsilon)$ -coreset with no error



Technique 1: Bounded movement of points

Har-Peled, Mazumdar, 2004

- move close points to the same position
- replace coinciding points by a weighted point



Technique 1: Bounded movement of points

Har-Peled, Mazumdar, 2004

- move close points to the same position
- replace coinciding points by a weighted point

Technique 1: Bounded movement of points

Har-Peled, Mazumdar, 2004

- move close points to the same position
- replace coinciding points by a weighted point

Goal

Overall squared movement small in comparison with cost

Technique 1: Bounded movement of points Har-Peled, Mazumdar, 2004

Let OPT be the cost of an optimal k-means solution.

- move each point x in P to $\pi(x)$, obtain set Q
- Ensure that

$$\sum_{x \in P} ||x - \pi(x)||^2 \le \frac{\varepsilon^2}{16} \cdot OPT$$

- Then $|\operatorname{cost}(Q) \operatorname{cost}(P)| \le \varepsilon \cdot \operatorname{cost}(P)$
- $\Rightarrow \pi(P)$ is a coreset! (but a large one)

Technique 1: Bounded movement of points Har-Peled, Mazumdar, 2004

Let OPT be the cost of an optimal k-means solution.

- move each point x in P to $\pi(x)$, obtain set Q
- Ensure that

$$\sum_{x \in P} ||x - \pi(x)||^2 \le \frac{\varepsilon^2}{16} \cdot OPT$$

- Then $|\cot(Q) \cot(P)| \le \varepsilon \cdot \cot(P)$
- $\Rightarrow \pi(P)$ is a coreset! (but a large one)

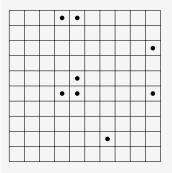
• Move points, obtain Q, replace points by weighted points

Notice: Sum of all movements must be small

Coresets for k-means clustering

Technique 1: Bounded movement of points

Har-Peled, Mazumdar, 2004

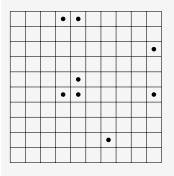


First idea:

- Place a grid
- Move all points in the same cell to one point

Technique 1: Bounded movement of points

Har-Peled, Mazumdar, 2004



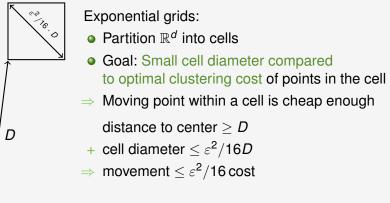
First idea:

- Place a grid
- Move all points in the same cell to one point

Problem:

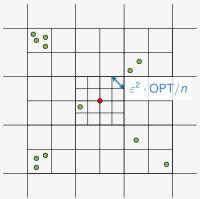
- Requires a cell width of $\sqrt{\varepsilon^2 OPT/(16dn)}$
- $\Rightarrow \Omega((\textit{nd}\varepsilon^{-2})^{d/2})$ cells
 - far too large 'coreset'

Technique 1: Bounded movement of points Har-Peled, Mazumdar, 2004



closest center in optimal solution

Technique 1: Bounded movement of points Har-Peled, Mazumdar, 2004



Idea

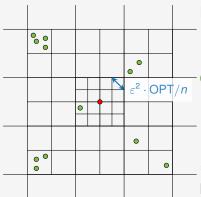
- Exponentially growing cells
- Diameter grows with distance

Construction

- An exponential grid per center
- \$\mathcal{O}\$ (log n) rings in each grid
- $\mathcal{O}(\varepsilon^{-d})$ cells in each ring
- $= \mathcal{O}(k \log n \varepsilon^{-d})$ cells

Finally: Bicriteria approximation

Technique 1: Bounded movement of points Har-Peled, Mazumdar, 2004



Idea

- Exponentially growing cells
- Diameter grows with distance

Construction

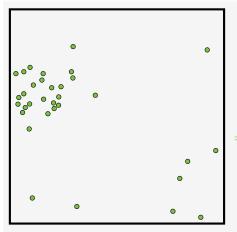
- An exponential grid per center
- \$\mathcal{O}\$ (log n) rings in each grid
- $\mathcal{O}(\varepsilon^{-d})$ cells in each ring
- $= \mathcal{O}(k \log n \varepsilon^{-d})$ cells

Finally: Bicriteria approximation

There exists a (k, ε) -coreset of size $\mathcal{O}(k \log^4 n/\varepsilon^d)$.

Constructing coresets for k-means

Frahling, Sohler, 2005



- Distribute error more evenly among cells
- A cell is δ-heavy if its diameter times its number of points is > δOPT
- ⇒ smaller heavy cells contain more points
 - place a coreset point in every heavy cell that has no heavy child cells

Constructing coresets for k-means

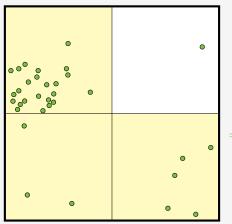
Frahling, Sohler, 2005



- Distribute error more evenly among cells
- A cell is δ-heavy if its diameter times its number of points is > δOPT
- ⇒ smaller heavy cells contain more points
 - place a coreset point in every heavy cell that has no heavy child cells

Constructing coresets for k-means

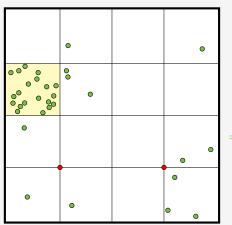
Frahling, Sohler, 2005



- Distribute error more evenly among cells
- A cell is δ-heavy if its diameter times its number of points is > δOPT
- ⇒ smaller heavy cells contain more points
 - place a coreset point in every heavy cell that has no heavy child cells

Constructing coresets for k-means

Frahling, Sohler, 2005

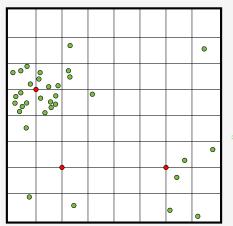


- Distribute error more evenly among cells
- A cell is δ-heavy if its diameter times its number of points is > δOPT
- ⇒ smaller heavy cells contain more points
 - place a coreset point in every heavy cell that has no heavy child cells

BICO 0000000

Constructing coresets for k-means

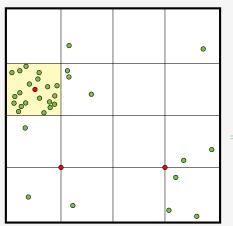
Frahling, Sohler, 2005



- Distribute error more evenly among cells
- A cell is δ-heavy if its diameter times its number of points is > δOPT
- ⇒ smaller heavy cells contain more points
 - place a coreset point in every heavy cell that has no heavy child cells

Constructing coresets for k-means

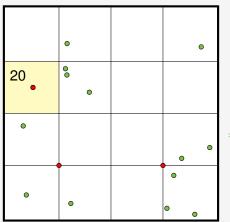
Frahling, Sohler, 2005



- Distribute error more evenly among cells
- A cell is δ-heavy if its diameter times its number of points is > δOPT
- ⇒ smaller heavy cells contain more points
 - place a coreset point in every heavy cell that has no heavy child cells

Constructing coresets for k-means

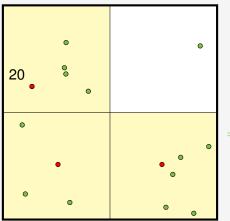
Frahling, Sohler, 2005



- Distribute error more evenly among cells
- A cell is δ-heavy if its diameter times its number of points is > δOPT
- ⇒ smaller heavy cells contain more points
 - place a coreset point in every heavy cell that has no heavy child cells

Constructing coresets for k-means

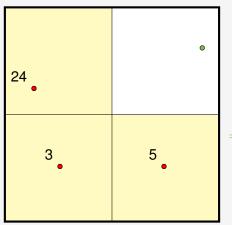
Frahling, Sohler, 2005



- Distribute error more evenly among cells
- A cell is δ-heavy if its diameter times its number of points is > δOPT
- ⇒ smaller heavy cells contain more points
 - place a coreset point in every heavy cell that has no heavy child cells

Constructing coresets for k-means

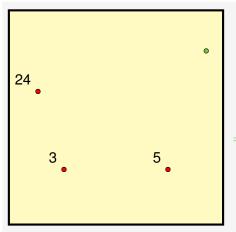
Frahling, Sohler, 2005



- Distribute error more evenly among cells
- A cell is δ-heavy if its diameter times its number of points is > δOPT
- ⇒ smaller heavy cells contain more points
 - place a coreset point in every heavy cell that has no heavy child cells

Constructing coresets for k-means

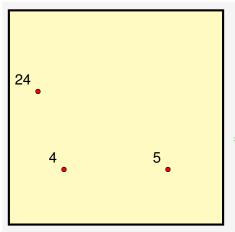
Frahling, Sohler, 2005



- Distribute error more evenly among cells
- A cell is δ-heavy if its diameter times its number of points is > δOPT
- ⇒ smaller heavy cells contain more points
 - place a coreset point in every heavy cell that has no heavy child cells

Constructing coresets for k-means

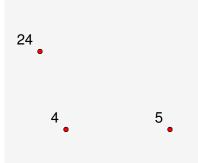
Frahling, Sohler, 2005



- Distribute error more evenly among cells
- A cell is δ-heavy if its diameter times its number of points is > δOPT
- ⇒ smaller heavy cells contain more points
 - place a coreset point in every heavy cell that has no heavy child cells

Constructing coresets for k-means

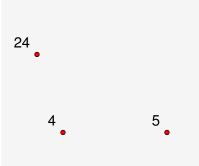
Frahling, Sohler, 2005



- Distribute error more evenly among cells
- A cell is δ-heavy if its diameter times its number of points is > δOPT
- ⇒ smaller heavy cells contain more points
 - place a coreset point in every heavy cell that has no heavy child cells

Constructing coresets for k-means

Frahling, Sohler, 2005



Idea

- Distribute error more evenly among cells
- A cell is δ-heavy if its diameter times its number of points is > δOPT
- ⇒ smaller heavy cells contain more points
 - place a coreset point in every heavy cell that has no heavy child cells

There exists a coreset of size $O(k \log n \varepsilon^{-d})$.

Coresets for k-means clustering

Har-Peled, Kushal, 2005

Coreset for one-dimensional input

- Subdivide into $\mathcal{O}(k^2/\varepsilon^2)$ intervals with $\mathcal{O}((\varepsilon/k)^2 OPT)$ cost
- Place two coreset points in each interval with correct mean
- Most of the intervals are clustered with one center
- These induce no error!
- Error for remaining k 1 intervals can be bounded

Har-Peled, Kushal, 2005

Coreset for one-dimensional input

- Subdivide into $\mathcal{O}(k^2/\varepsilon^2)$ intervals with $\mathcal{O}((\varepsilon/k)^2 OPT)$ cost
- Place two coreset points in each interval with correct mean
- Most of the intervals are clustered with one center
- These induce no error!
- Error for remaining k 1 intervals can be bounded

Har-Peled, Kushal, 2005

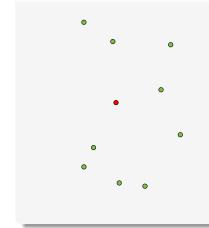
Coreset for one-dimensional input

- Subdivide into $\mathcal{O}(k^2/\varepsilon^2)$ intervals with $\mathcal{O}((\varepsilon/k)^2 OPT)$ cost
- Place two coreset points in each interval with correct mean

2 2

- Most of the intervals are clustered with one center
- These induce no error!
- Error for remaining k 1 intervals can be bounded

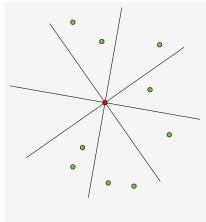
Har-Peled, Kushal, 2005



Multidimensional coreset

- Again, centers of a bicriteria approximation
- Shoot *O*(ε^{-(d-1)}) rays from each center
- Project points to the rays
- Compute *O*(k · ε^{-(d-1)}) one-dimensional coresets

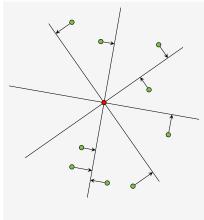
Har-Peled, Kushal, 2005



Multidimensional coreset

- Again, centers of a bicriteria approximation
- Shoot *O*(ε^{-(d-1)}) rays from each center
- Project points to the rays
- Compute *O*(k · ε^{-(d-1)}) one-dimensional coresets

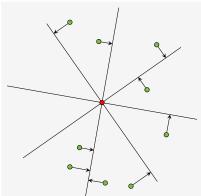
Har-Peled, Kushal, 2005



Multidimensional coreset

- Again, centers of a bicriteria approximation
- Shoot 𝒪(𝔅^{−(𝑌−1)}) rays from each center
- Project points to the rays
- Compute *O*(k · ε^{-(d-1)}) one-dimensional coresets

Har-Peled, Kushal, 2005



Multidimensional coreset

- Again, centers of a bicriteria approximation
- Shoot *O*(ε^{-(d-1)}) rays from each center
- Project points to the rays
- Compute *O*(k · ε^{-(d-1)}) one-dimensional coresets

There exists a (k, ε) -coreset of size $\mathcal{O}(k^3/\varepsilon^{d+1})$.

Technique 2: Sampling

Sampling Algorithm

- Sample points from P uniformly at random
- The sampled points form the coreset

Around $\mathcal{O}(k \cdot \log n \cdot n \cdot diam(P)/(\varepsilon^2 \cdot OPT))$ samples needed

Precise statements due to Haussler (1990), can be proven by Hoeffding's inequality

Technique 2: Sampling

- compute bicriteria approximation
- partition input points into subsets with diam(P') ≈ cost(P')/|P'|
- sample representatives from each subset

Technique 2: Sampling

Chen, 2006

- compute bicriteria approximation
- partition input points into subsets with diam(P') ≈ cost(P')/|P'|
- sample representatives from each subset

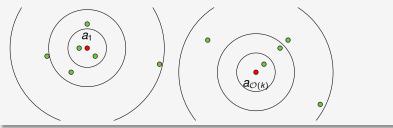
Coresets for k-means clustering

Technique 2: Sampling

- compute bicriteria approximation
- partition input points into subsets with diam(P') ≈ cost(P')/|P'|
- sample representatives from each subset

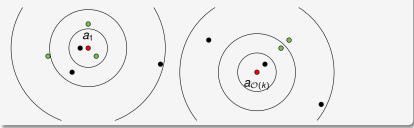
Technique 2: Sampling

- compute bicriteria approximation
- partition input points into subsets with diam(P') ≈ cost(P')/|P'|
- sample representatives from each subset



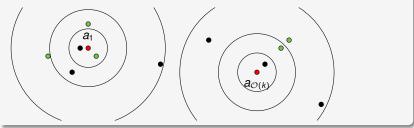
Technique 2: Sampling

- compute bicriteria approximation
- partition input points into subsets with diam(P') ≈ cost(P')/|P'|
- sample representatives from each subset



Technique 2: Sampling

- compute bicriteria approximation
- partition input points into subsets with diam(P') ≈ cost(P')/|P'|
- sample representatives from each subset



Technique 2: Sampling

- Succeeds with constant probability for each center set
- Discretization of the solution space necessary

Technique 2: Sampling

Chen, 2006

- Succeeds with constant probability for each center set
- Discretization of the solution space necessary

There exists a (k, ε) -coreset of size $\widetilde{\mathcal{O}}(dk^2 \log n/\varepsilon^2)$.

Technique 2: Refined sampling strategies

Feldman, Monemizadeh, Sohler, 2007 Importance sampling

- Sample points with a probability proportional to their optimum cost
- Weight points accordingly

• For points with low optimum cost, sample uniformly Improvement due to Langberg, Schulman, 2010.

Technique 2: Refined sampling strategies

Feldman, Monemizadeh, Sohler, 2007 Importance sampling

- Sample points with a probability proportional to their optimum cost
- Weight points accordingly

• For points with low optimum cost, sample uniformly Improvement due to Langberg, Schulman, 2010.

There exists a (k, ε) -coreset of size $\mathcal{O}(d^2k^3\varepsilon^{-2})$.

Technique 2: Refined sampling strategies

Feldman, Langberg, 2011

Sensitivity based sampling

• The sensitivity of a point $x \in P$ is

$$\sup_{C \subset \mathbb{R}^d, |C|=k} \frac{\min_{c \in C} ||x - c||^2}{\sum_{y \in P} \min_{c \in C} ||y - c||^2}$$

• Maximum share of a point in the cost function

 \Rightarrow Sampling probabilities proportional to sensitivity

Technique 3: Pseudorandomness

Idea

- If a point set has little structure (it is pseudorandom), clustering it is similar for all centers
- ⇒ Clustering it with one center does not induce much error
- ⇒ Simulate clustering with one center by using the centroid

Partition the input into pseudorandom subsets

BICO 0000000

Constructing coresets for k-means

Technique 3: Pseudorandomness

Constructing coresets for k-means

Technique 3: Pseudorandomness

- Start with partitioning according to an optimal center set
- Continiously subdivide sets until every set S satisfies:
- Clustering S with k centers is at most a factor (1 + ε) cheaper than clustering S with one center

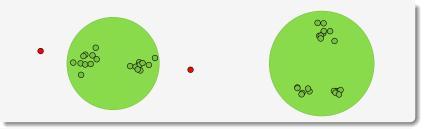
Constructing coresets for k-means

Technique 3: Pseudorandomness

- Start with partitioning according to an optimal center set
- Continiously subdivide sets until every set S satisfies:
- Clustering S with k centers is at most a factor (1 + ε) cheaper than clustering S with one center

Constructing coresets for k-means

Technique 3: Pseudorandomness



- Start with partitioning according to an optimal center set
- Continiously subdivide sets until every set S satisfies:
- Clustering S with k centers is at most a factor (1 + ε) cheaper than clustering S with one center

Constructing coresets for k-means

Technique 3: Pseudorandomness

- Start with partitioning according to an optimal center set
- Continiously subdivide sets until every set S satisfies:
- Clustering S with k centers is at most a factor (1 + ε) cheaper than clustering S with one center

Constructing coresets for k-means

Technique 3: Pseudorandomness

- Start with partitioning according to an optimal center set
- Continiously subdivide sets until every set S satisfies:
- Clustering S with k centers is at most a factor (1 + ε) cheaper than clustering S with one center

Constructing coresets for k-means

Technique 3: Pseudorandomness

- Start with partitioning according to an optimal center set
- Continiously subdivide sets until every set S satisfies:
- Clustering S with k centers is at most a factor $(1 + \epsilon)$ cheaper than clustering S with one center
- ... or cost for 1-clustering is negligible ($\varepsilon^2 OPT$)

Constructing coresets for k-means

Technique 3: Pseudorandomness

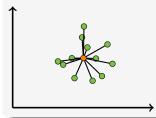
- sets on level 1 together cost OPT
- sets on level *i* cost $\frac{OPT}{(1+\epsilon)^i}$
- sets on level $\log_{1+\epsilon} \epsilon^{-2}$ have negligible cost ($\epsilon^2 OPT$)

• $\mathcal{O}\left(k^{\log_{1+\epsilon}\epsilon^{-2}}\right)$ coreset points \rightarrow independent of *n* and *d*

Technique 4: Dimensionality reductionDrineas, Frieze, Kannan, Vempala, Vinay, 1999Let P be a set of n points in \mathbb{R}^n . Consider the best fit subspace

$$V_k := \arg\min_{\dim(V)=k} \sum_{p \in P} d(p, V)^2 \subset \mathbb{R}^n.$$

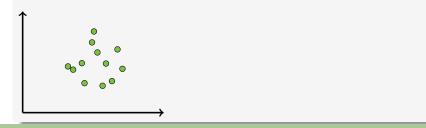
Solving the projected instance in V_k yields a 2-approximation.



Technique 4: Dimensionality reduction Drineas, Frieze, Kannan, Vempala, Vinay, 1999 Let P be a set of n points in \mathbb{R}^n . Consider the best fit subspace

$$V_k := \arg\min_{\dim(V)=k} \sum_{p \in P} d(p, V)^2 \subset \mathbb{R}^n.$$

Solving the projected instance in V_k yields a 2-approximation.



Technique 4: Dimensionality reductionDrineas, Frieze, Kannan, Vempala, Vinay, 1999Let P be a set of n points in \mathbb{R}^n . Consider the best fit subspace

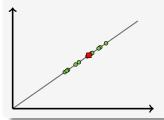
$$V_k := \arg\min_{\dim(V)=k} \sum_{p \in P} d(p, V)^2 \subset \mathbb{R}^n.$$

Technique 4: Dimensionality reductionDrineas, Frieze, Kannan, Vempala, Vinay, 1999Let P be a set of n points in \mathbb{R}^n . Consider the best fit subspace

$$V_k := \arg\min_{\dim(V)=k} \sum_{p \in P} d(p, V)^2 \subset \mathbb{R}^n.$$

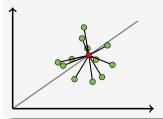
Technique 4: Dimensionality reductionDrineas, Frieze, Kannan, Vempala, Vinay, 1999Let P be a set of n points in \mathbb{R}^n . Consider the best fit subspace

$$V_k := \arg\min_{\dim(V)=k} \sum_{p \in P} d(p, V)^2 \subset \mathbb{R}^n.$$



Technique 4: Dimensionality reductionDrineas, Frieze, Kannan, Vempala, Vinay, 1999Let P be a set of n points in \mathbb{R}^n . Consider the best fit subspace

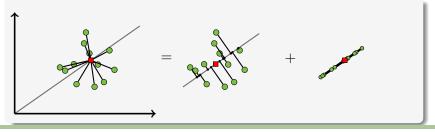
$$V_k := \arg\min_{\dim(V)=k} \sum_{p \in P} d(p, V)^2 \subset \mathbb{R}^n.$$



Technique 4: Dimensionality reductionDrineas, Frieze, Kannan, Vempala, Vinay, 1999Let P be a set of n points in \mathbb{R}^n . Consider the best fit subspace

$$V_k := \arg\min_{\dim(V)=k} \sum_{p \in P} d(p, V)^2 \subset \mathbb{R}^n.$$

Solving the projected instance in V_k yields a 2-approximation.



Technique 4: Dimensionality Reduction

Drineas et.al.

Solving the instance projected to V_k yields a 2-approximation.

Technique 4: Dimensionality Reduction

Drineas et.al.

Solving the instance projected to V_k yields a 2-approximation.

Feldman, S., Sohler, 2013

Projecting to $V_{\mathcal{O}(k/\epsilon^2)}$ instead yields a $(1 + \epsilon)$ -approximation.

There exists a coreset of size $\tilde{\mathcal{O}}(k^4 \varepsilon^{-4})$.

0000000	000000000000000000000000000000000000000	000000
A practically efficient coreset algorithm	1	

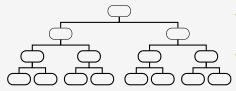
Processing Big Data

- Most coreset constructions need random access
- Undesirable / not possible for Big Data or streaming settings

Processing Big Data

- Most coreset constructions need random access
- Undesirable / not possible for Big Data or streaming settings

Conversion to a Streaming Algorithm: Merge & Reduce



- read data in blocks
- compute a coreset for each block $\rightarrow s$
- merge coresets in a tree fashion

• \rightsquigarrow space $s \cdot \log n$

Coreset sizes increase, algorithm has additional overhead

A practically efficient coreset algorithm

Streaming coreset algorithms (no Merge & Reduce)

- Coreset construction due to Frahling and Sohler
- BICO (Fichtenberger, Gillé, S., Schwiegelshohn, Sohler)

A practically efficient coreset algorithm

Streaming coreset algorithms (no Merge & Reduce)

- Coreset construction due to Frahling and Sohler
- BICO (Fichtenberger, Gillé, S., Schwiegelshohn, Sohler)

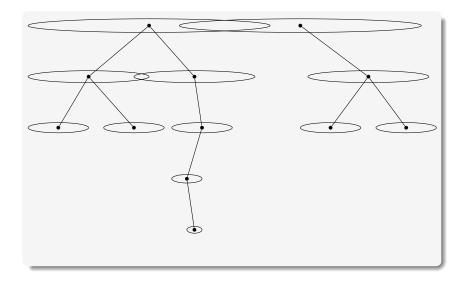
BICO

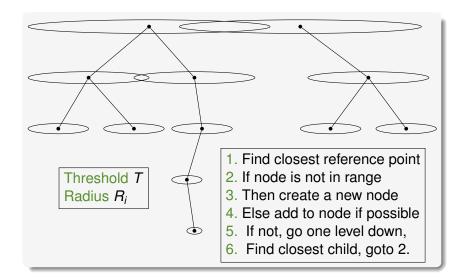
- based on the datastructure of BIRCH
- works with Technique 1 (bounded movement of points)
- computes a coreset
- http://ls2-www.cs.tu-dortmund.de/bico

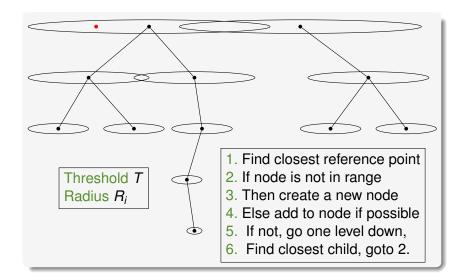
BIRCH

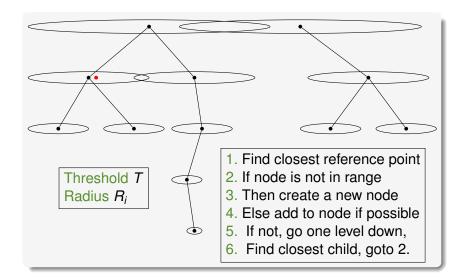
- Zhang, Ramakrishnan, Livny, 1997
- SIGMOD Test of Time Award 2006

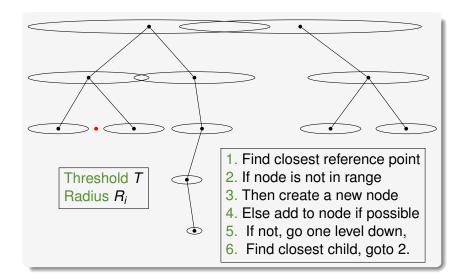
A practically efficient coreset algorithm

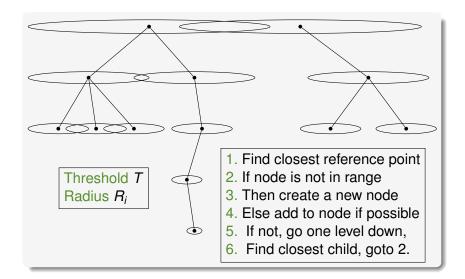












Algorithms for comparison

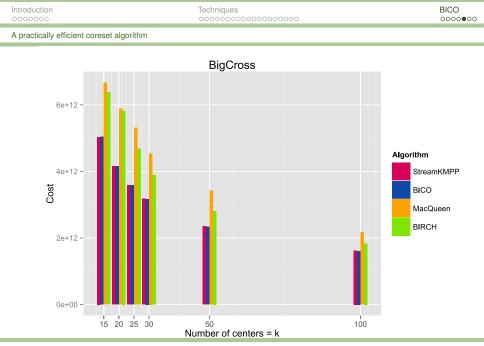
- StreamKM++ and BIRCH (author's implementations)
- MacQueen's k–means algorithm (ESMERALDA)

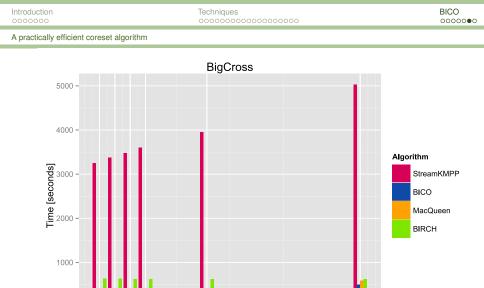
Data sets

	BigCross	CalTech128	Census	CoverType	Tower
n	1 · 10 ⁷	3 · 10 ⁶	2 · 10 ⁶	6 · 10 ⁵	$5\cdot 10^6$
d	57	128	68	55	3
nd	7 · 10 ⁸	4 · 10 ⁸	2 · 10 ⁸	3 · 10 ⁷	1 · 10 ⁷

Diagrams

- 100 runs for every test instance
- Values shown in the diagrams are mean values





50

Number of centers = k

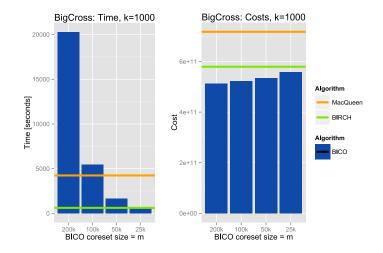
100

Coresets for k-means clustering

0 -

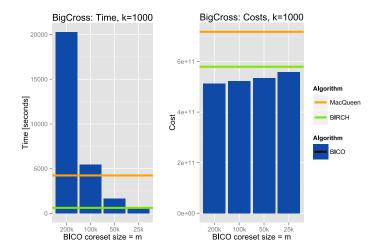
15 20 25 30

Introduction
0000000



Introduction
0000000

A practically efficient coreset algorithm



Thank you for your attention!