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Coresets and k -means

Whether a summary / compressed representation / coreset
is good depends on the objective

A coreset represents input data
with regard to an objective function
(e.g.) in order to solve an optimization problem

Notice that
there is no common definition
many approaches can be viewed as a coreset
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Coresets and k -means

The k -means Problem

Given a point set P ⊆ Rn,
compute a set C ⊆ Rn

with |C| = k centers
which minimizes cost(P,C)

=
∑
p∈P

min
c∈C
||c − p||2,

the sum of the squared
distances.

|| · || is the Euclidean norm
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Coresets and k -means

What k -means cannot cluster

In these cases, other objective functions might be better suited
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Coresets and k -means

Coreset (idea)
compute a smaller weighted point set
that preserves the k -means objective,
i.e., the sum of the weighted squared distances is similar
for all sets of k centers

Why for all centers?
coreset and input should look alike for k -means

assume optimizing over the possible centers
if the cost is underestimated for certain center sets,
then they might be mistakenly assumed to be optimal
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Coresets and k -means

Small summary of the data that preserves the cost function

Coresets (Har-Peled, Mazumdar)
Given a set of points P ∈ Rn, a weighted set S is a
(k , ε)-coreset if for all sets C ⊂ Rn of k centers it holds that

|costw (S,C)− cost(P,C)| ≤ ε cost(P,C)

where costw (S,C) =
∑

p∈S minc∈C w(p)||p − c||2.

4 2

2

5
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Coresets and k -means

Coreset constructions
’01: Agarwal, Har-Peled and Varadarajan: Coreset concept
’02: Bǎdoiu, Har-Peled and Indyk:

First coreset construction for clustering problems
’04: Har-Peled and Mazumdar, Coreset of size O(kε−d log n),

maintainable in data streams
’05: Har-Peled and Kushal, Coreset of size O(k3ε−(d+1)

’05: Frahling and Sohler: Coreset of size O(kε−d log n),
insertion-deletion data streams

’06: Chen: Coresets for metric and Euclidean k -median and
k -means, polynomial in d , log n and ε−1

’07: Feldman, Monemizadeh, Sohler: weak coreset poly(k , ε−1)

’10: Langberg, Schulman: Õ(d2k3/ε2)

’13: Feldman, S., Sohler: (k/ε)O(1)

Coresets for k -means clustering
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Constructing coresets for k -means

Outline
Different techniques to construct coresets
Interlude: Dimensionality reduction
A practically efficient coreset construction

Coresets for k -means clustering
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Constructing coresets for k -means

Technique 0: The magic formula for k -means
Zhang, Ramakrishnan, Livny, 1996

For every P ⊂ Rd and z ∈ Rd ,∑
x∈P

||x − z||2 =
∑
x∈P

||x − µ(P)||2 + |P| · ||µ(P)− z||2

where µ(P) =
∑

x∈P x/|P| is the centroid of P.

= +

Coresets for k -means clustering
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Constructing coresets for k -means

Technique 0: The magic formula for k -means

Implications
centroid is always the optimal 1-means solution
(much nicer situation than for 1-median!)
centroid (plus constant) is an (1, ε)-coreset with no error

= +

Coresets for k -means clustering
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Constructing coresets for k -means

Technique 1: Bounded movement of points
Har-Peled, Mazumdar, 2004

move close points to the same position
replace coinciding points by a weighted point

4 2

2

5

Goal
Overall squared movement small in comparison with cost
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Constructing coresets for k -means

Technique 1: Bounded movement of points
Har-Peled, Mazumdar, 2004
Let OPT be the cost of an optimal k-means solution.

move each point x in P to π(x), obtain set Q
Ensure that ∑

x∈P

||x − π(x)||2 ≤ ε2

16
·OPT

Then | cost(Q)− cost(P)| ≤ ε · cost(P)

⇒ π(P) is a coreset! (but a large one)

Move points, obtain Q, replace points by weighted points
Notice: Sum of all movements must be small

Coresets for k -means clustering
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Constructing coresets for k -means

Technique 1: Bounded movement of points

Har-Peled, Mazumdar, 2004

First idea:
Place a grid
Move all points in the same cell
to one point

Problem:
Requires a cell width
of
√
ε2OPT/(16dn)

⇒ Ω((ndε−2)d/2) cells
far too large ‘coreset’
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Constructing coresets for k -means

Technique 1: Bounded movement of points
Har-Peled, Mazumdar, 2004

closest center in optimal solution

D

ε 2
/16 · D

Exponential grids:
Partition Rd into cells
Goal: Small cell diameter compared
to optimal clustering cost of points in the cell

⇒ Moving point within a cell is cheap enough

distance to center ≥ D
+ cell diameter ≤ ε2/16D
⇒ movement ≤ ε2/16 cost

Coresets for k -means clustering
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Constructing coresets for k -means

Technique 1: Bounded movement of points
Har-Peled, Mazumdar, 2004

ε2 · OPT/n

Idea
Exponentially growing cells
Diameter grows with distance

Construction
An exponential grid per center
O(log n) rings in each grid
O(ε−d) cells in each ring

= O(k log nε−d) cells
Finally: Bicriteria approximation

There exists a (k , ε)-coreset of size O(k log4 n/εd ).
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Constructing coresets for k -means

Frahling, Sohler, 2005

2024

3 5

24

4 5

Idea
Distribute error more
evenly among cells
A cell is δ-heavy if its
diameter times its number
of points is > δOPT

⇒ smaller heavy cells
contain more points
place a coreset point in
every heavy cell that has
no heavy child cells

There exists a coreset of size O(k log nε−d ).
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Constructing coresets for k -means

Har-Peled, Kushal, 2005
Coreset for one-dimensional input

Subdivide into O(k2/ε2) intervals with O((ε/k)2OPT ) cost
Place two coreset points in each interval with correct mean
Most of the intervals are clustered with one center
These induce no error!
Error for remaining k − 1 intervals can be bounded

2 2 1 1 1 2 22 2
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Constructing coresets for k -means

Har-Peled, Kushal, 2005

Multidimensional coreset
Again, centers of a bicriteria
approximation
Shoot O(ε−(d−1)) rays from
each center
Project points to the rays
Compute O(k · ε−(d−1))
one-dimensional coresets

There exists a (k , ε)-coreset of size O(k3/εd+1).

Coresets for k -means clustering
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Constructing coresets for k -means

Technique 2: Sampling

Sampling Algorithm
Sample points from P uniformly at random
The sampled points form the coreset

Around O(k · log n · n · diam(P)/(ε2 ·OPT )) samples needed

Precise statements due to Haussler (1990),
can be proven by Hoeffding’s inequality

Coresets for k -means clustering
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Constructing coresets for k -means

Technique 2: Sampling

Chen, 2006
compute bicriteria approximation
partition input points into subsets with
diam(P ′) ≈ cost(P ′)/|P ′|
sample representatives from each subset

a1

aO(k)

Coresets for k -means clustering
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Constructing coresets for k -means

Technique 2: Sampling

Chen, 2006
Succeeds with constant probability for each center set
Discretization of the solution space necessary

There exists a (k , ε)-coreset of size Õ(dk2 log n/ε2).
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Constructing coresets for k -means

Technique 2: Refined sampling strategies

Feldman, Monemizadeh, Sohler, 2007
Importance sampling

Sample points with a probability proportional to their
optimum cost
Weight points accordingly
For points with low optimum cost, sample uniformly

Improvement due to Langberg, Schulman, 2010.

There exists a (k , ε)-coreset of size O(d2k3ε−2).

Coresets for k -means clustering



Introduction Techniques BICO

Constructing coresets for k -means

Technique 2: Refined sampling strategies

Feldman, Monemizadeh, Sohler, 2007
Importance sampling

Sample points with a probability proportional to their
optimum cost
Weight points accordingly
For points with low optimum cost, sample uniformly

Improvement due to Langberg, Schulman, 2010.

There exists a (k , ε)-coreset of size O(d2k3ε−2).

Coresets for k -means clustering



Introduction Techniques BICO

Constructing coresets for k -means

Technique 2: Refined sampling strategies

Feldman, Langberg, 2011
Sensitivity based sampling

The sensitivity of a point x ∈ P is

sup
C⊂Rd ,|C|=k

minc∈C ||x − c||2∑
y∈P minc∈C ||y − c||2

Maximum share of a point in the cost function

⇒ Sampling probabilities proportional to sensitivity

Coresets for k -means clustering



Introduction Techniques BICO

Constructing coresets for k -means

Technique 3: Pseudorandomness

Idea
If a point set has little structure (it is pseudorandom),
clustering it is similar for all centers

⇒ Clustering it with one center does not induce much error
⇒ Simulate clustering with one center by using the centroid

Partition the input into pseudorandom subsets

Coresets for k -means clustering
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Constructing coresets for k -means

Technique 3: Pseudorandomness

Start with partitioning according to an optimal center set
Continiously subdivide sets until every set S satisfies:
Clustering S with k centers is at most a factor (1 + ε)
cheaper than clustering S with one center

. . . or cost for 1-clustering is negligible (ε2OPT )
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Technique 3: Pseudorandomness

sets on level 1 together cost OPT
sets on level i cost OPT

(1+ε)i

sets on level log1+ε ε
−2 have negligible cost (ε2OPT )

O
(

k log1+ε ε
−2
)

coreset points→ independent of n and d

Coresets for k -means clustering
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Constructing coresets for k -means

Technique 4: Dimensionality reduction
Drineas, Frieze, Kannan, Vempala, Vinay, 1999
Let P be a set of n points in Rn. Consider the best fit subspace

Vk := arg min
dim(V )=k

∑
p∈P

d(p,V )2 ⊂ Rn.

Solving the projected instance in Vk yields a 2-approximation.

= +

Coresets for k -means clustering
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Technique 4: Dimensionality Reduction

Drineas et.al.
Solving the instance projected to Vk yields a 2-approximation.

Feldman, S., Sohler, 2013
Projecting to VO(k/ε2) instead yields a (1 + ε)-approximation.

There exists a coreset of size Õ(k4ε−4).
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Technique 4: Dimensionality Reduction

Drineas et.al.
Solving the instance projected to Vk yields a 2-approximation.

Feldman, S., Sohler, 2013
Projecting to VO(k/ε2) instead yields a (1 + ε)-approximation.

There exists a coreset of size Õ(k4ε−4).
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A practically efficient coreset algorithm

Processing Big Data
Most coreset constructions need random access
Undesirable / not possible for Big Data or streaming settings

Conversion to a Streaming Algorithm: Merge & Reduce
read data in blocks
compute a coreset for
each block→ s
merge coresets in a
tree fashion
 space s · log n

Coreset sizes increase, algorithm has additional overhead

Coresets for k -means clustering
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A practically efficient coreset algorithm

Streaming coreset algorithms (no Merge & Reduce)
Coreset construction due to Frahling and Sohler
BICO (Fichtenberger, Gillé, S., Schwiegelshohn, Sohler)

BICO
based on the datastructure of BIRCH
works with Technique 1 (bounded movement of points)
computes a coreset
http://ls2-www.cs.tu-dortmund.de/bico

BIRCH
Zhang, Ramakrishnan, Livny, 1997
SIGMOD Test of Time Award 2006

Coresets for k -means clustering
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A practically efficient coreset algorithm

1. Find closest reference point
2. If node is not in range
3. Then create a new node
4. Else add to node if possible
5. If not, go one level down,
6. Find closest child, goto 2.

Threshold T
Radius Ri

Coresets for k -means clustering
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Algorithms for comparison
StreamKM++ and BIRCH (author’s implementations)
MacQueen’s k–means algorithm (ESMERALDA)

Data sets
BigCross CalTech128 Census CoverType Tower

n 1 · 107 3 · 106 2 · 106 6 · 105 5 · 106

d 57 128 68 55 3
nd 7 · 108 4 · 108 2 · 108 3 · 107 1 · 107

Diagrams
100 runs for every test instance
Values shown in the diagrams are mean values

Coresets for k -means clustering
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Thank you for your attention!
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