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Introduction The k -means problem

Definition

The k -means problem

Given a point set P ⊆ Rd ,
compute a set C ⊆ Rd

with |C| = k centers
which minimizes

cost(P,C) =
∑
p∈P

min
c∈C
||p − c||2,

the sum of the squared distances.

induces a partitioning of P
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Introduction The k -means problem

Complexity

Small dimension d Large dimension d

Small k

Optimal solution by
enumerating Voronoi
diagrams [IKI94]

NP-hard for k = 2 [ADHP09],
but PTAS, best running time
O(nd + 2poly(1/ε,k)) [FL11]

Large k

NP-hard for d = 2 [MNV09]
no PTAS known, but no
APX-hardness proof either

APX-hard [ACKS15],
factor is ≥ 1.0013 [LSW15]
and ≤ 9 + ε [KMN+02]

[ACKS15] Awasthi, Charikar, Krishnaswamy, Sinop. The hardness of approximation of euclidean k-means, SoCG 2015.
[ADHP09] Aloise, Deshpande, Hansen, Popat: NP-hardness of Euclidean sum-of-squares clustering, Machine Learning, 2009.
[FL11] Feldman, Langberg, A unified framework for approximating and clustering data, STOC 2011.
[IKI94] Inaba, Katoh, Imai: Appl. of Weighted Voronoi Diagrams and Rand. to Variance-Based k -Clustering, SoCG 1994.
[KMN+02] Kanungo, Mount, Netanyahu, Piatko, Silverman, Y. Wu, A local search approx. alg. for k-means clustering, SoCG 2002.
[LSW13] Lee, S. Wright: Improved and Simplified Inapproximability for k-means, CORR 2015.
[M00] Matoušek: On approximate geometric k-clustering
[MNV09] Mahajan, Nimbhorkar, Varadarajan, The Planar k -means Problem is NP-Hard, WALCOM 2009.

What is the best possible approximation factor?
PTAS for d = 2, constant d?
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APX-hardness of k -means Reduction from vertex cover

Reducing vertex cover ( -free) to k -means
(Awasthi et. al., SoCG 2015)

Vertex Cover instance
Graph G = (V ,E)

k -means instance
For e = (i , j), define xe ∈ R|V | by

(xe)i = (xe)i = 1 and (xe)` = 0 for ` 6= i , j

xe = (0, . . . ,0,1
i

,0, . . . ,0,1
j

,0 . . . ,0)
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APX-hardness of k -means Reduction from vertex cover

Example

v1v2v3 . . .

e1101000000000
e2001010000000
e3001000000010
e3001100000000
e3001001000000
e3001000100000

1
6 01 1

6
1
6

1
6

1
6 000 1

6 0

.

.

.

Cluster cost with
(001000000000): |E ′|

With centroid: |E ′| − 1

v1v2v3 . . .

e1101000000000
e2010000100000
e3000000011000
e4000000000101
e5000010000010
e6000101000000

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

Cluster cost with
(000000000000): 2|E ′|

With centroid: 2|E ′| − 2
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APX-hardness of k -means Reduction from vertex cover

Idea

star cluster E ′ costs |E ′| − 1
small vertex cover implies k star clusters small cost (m − k )
hope: small cost implies many stars and small enough vertex cover

Problem: Triangles
v1v2v3

e1110
e2011
e3101

2
3

2
3

2
3

Cluster cost:
3 · (2 · 1

32 + (2
3)2) = 3− 1

Inapproximability of k -means 07.11.2015 5 / 9



APX-hardness of k -means Reduction from vertex cover

Idea
star cluster E ′ costs |E ′| − 1

small vertex cover implies k star clusters small cost (m − k )
hope: small cost implies many stars and small enough vertex cover

Problem: Triangles
v1v2v3

e1110
e2011
e3101

2
3

2
3

2
3

Cluster cost:
3 · (2 · 1

32 + (2
3)2) = 3− 1

Inapproximability of k -means 07.11.2015 5 / 9



APX-hardness of k -means Reduction from vertex cover

Idea
star cluster E ′ costs |E ′| − 1
small vertex cover implies k star clusters small cost (m − k )

hope: small cost implies many stars and small enough vertex cover

Problem: Triangles
v1v2v3

e1110
e2011
e3101

2
3

2
3

2
3

Cluster cost:
3 · (2 · 1

32 + (2
3)2) = 3− 1

Inapproximability of k -means 07.11.2015 5 / 9



APX-hardness of k -means Reduction from vertex cover

Idea
star cluster E ′ costs |E ′| − 1
small vertex cover implies k star clusters small cost (m − k )
hope: small cost implies many stars and small enough vertex cover

Problem: Triangles
v1v2v3

e1110
e2011
e3101

2
3

2
3

2
3

Cluster cost:
3 · (2 · 1

32 + (2
3)2) = 3− 1

Inapproximability of k -means 07.11.2015 5 / 9



APX-hardness of k -means Reduction from vertex cover

Idea
star cluster E ′ costs |E ′| − 1
small vertex cover implies k star clusters small cost (m − k )
hope: small cost implies many stars and small enough vertex cover

Problem: Triangles
v1v2v3

e1110
e2011
e3101

2
3

2
3

2
3

Cluster cost:
3 · (2 · 1

32 + (2
3)2) = 3− 1

Inapproximability of k -means 07.11.2015 5 / 9



APX-hardness of k -means Reduction from vertex cover

Awasthi et. al., Part I
(1 + ε)-hardness for vertex cover in -free graphs with D · n edges

⇓
(1 + ε′)-hardness for k -means with ε′ ∈ Θ(ε/D)

Chlebı́k, Clebı́ková, 2006
Given a 4-regular graph G, it is NP-hard to distinguish

G has a vertex cover of size ≤ αmin|V (A)|
every vertex cover in G has size ≥ αmax|V (A)|

Here, αmax/αmin ≥ 1.0192.
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Given a 4-regular graph G, it is NP-hard to distinguish

G has a vertex cover of size ≤ αmin|V (A)|
every vertex cover in G has size ≥ αmax|V (A)|

Here, αmax/αmin ≥ 1.0192.

Inapproximability of k -means 07.11.2015 6 / 9



APX-hardness of k -means Reduction from vertex cover

Awasthi et. al., Part I
(1 + ε)-hardness for vertex cover in -free graphs with D · n edges

⇓
(1 + ε′)-hardness for k -means with ε′ ∈ Θ(ε/D)

Awasthi et. al., Part II
APX-hardness for VC in graphs with max. degree D

⇓
APX-hardness for VC in -free graphs with max. degree poly(D, ε−1)

Chlebı́k, Clebı́ková, 2006
Given a 4-regular graph G, it is NP-hard to distinguish

G has a vertex cover of size ≤ αmin|V (A)|
every vertex cover in G has size ≥ αmax|V (A)|

Here, αmax/αmin ≥ 1.0192.

Inapproximability of k -means 07.11.2015 6 / 9



APX-hardness of k -means Reduction from vertex cover

Awasthi et. al., Part I
(1 + ε)-hardness for vertex cover in -free graphs with D · n edges

⇓
(1 + ε′)-hardness for k -means with ε′ ∈ Θ(ε/D)

New Part II
APX-hardness for VC in graphs that are 4-regular

⇓
APX-hardness for VC in -free graphs and maximum degree 4

Chlebı́k, Clebı́ková, 2006
Given a 4-regular graph G, it is NP-hard to distinguish

G has a vertex cover of size ≤ αmin|V (A)|
every vertex cover in G has size ≥ αmax|V (A)|

Here, αmax/αmin ≥ 1.0192.

Inapproximability of k -means 07.11.2015 6 / 9



APX-hardness of k -means Reduction from vertex cover

Awasthi et. al., Part I
(1 + ε)-hardness for vertex cover in -free graphs with D · n edges

⇓
(1 + ε′)-hardness for k -means with ε′ ∈ Θ(ε/D)

New Part II
APX-hardness for VC in graphs that are 4-regular

⇓
APX-hardness for VC in -free graphs and maximum degree 4

Chlebı́k, Clebı́ková, 2006
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APX-hardness of k -means Reduction from vertex cover

Idea I
Replace every edge by three edges

( +4n vertices and +4n edges)

⇒

Minimum vertex cover size increases by 2n:

⇒

⇒ ⇒

 NP-hard to decide between ≤ (αmin + 2)n and ≥ (αmax + 2)n
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APX-hardness of k -means Reduction from vertex cover

Idea II

Let E ′ with |E ′| ≥ m/2 be
the edges of a large cut
Pick E1 ⊆ E ′ with
|E1| = m/2 = n
(E1 is bipartite)
n remaining edges, E2

Only split edges in E2

 2n new edges and vertices, min. vertex cover size increases by n
 Gap between (αmin + 1)n and (αmax + 1)n
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APX-hardness for VC in 4-regular graphs

New Part II
APX-hardness for VC in 4-regular graphs

⇓
APX-hardness for VC in 4-regular -free graphs

Awasthi et. al., Part I
(1 + ε)-hardness for vertex cover in -free graphs with D · n edges

⇓
(1 + ε′)-hardness for k -means with ε′ ∈ Θ(ε/D)

Theorem
It is NP-hard to approximate k -means within a factor of 1.0013.
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APX-hardness for VC in 4-regular graphs

New Part II
APX-hardness for VC in 4-regular graphs

⇓
APX-hardness for VC in 4-regular -free graphs

Awasthi et. al., Part I
(1 + ε)-hardness for vertex cover in -free graphs with D · n edges

⇓
(1 + ε′)-hardness for k -means with ε′ ∈ Θ(ε/D)

Theorem
It is NP-hard to approximate k -means within a factor of 1.0013.

Thanks!

Inapproximability of k -means 07.11.2015 9 / 9


	Introduction
	The k-means problem

	APX-hardness of k-means
	Reduction from vertex cover


