Simplified Inapproximability of k-means

Melanie Schmidt

Joint work with Euiwoong Lee and John Wright

07.11.2015

Inapproximability of k-means

07.11.2015 0 / 9

The *k*-means problem

The k-means problem

• Given a point set $P \subseteq \mathbb{R}^d$,

The k-means problem

- Given a point set $P \subseteq \mathbb{R}^d$,
- compute a set $C \subseteq \mathbb{R}^d$ with |C| = k centers

The *k*-means problem

- Given a point set $P \subseteq \mathbb{R}^d$,
- compute a set C ⊆ ℝ^d
 with |C| = k centers
- which minimizes

$$\operatorname{cost}(P,C) = \sum_{p \in P} \min_{c \in C} ||p - c||^2,$$

the sum of the squared distances.

The k-means problem

- Given a point set $P \subseteq \mathbb{R}^d$,
- compute a set C ⊆ ℝ^d
 with |C| = k centers
- which minimizes

$$\operatorname{cost}(P,C) = \sum_{p \in P} \min_{c \in C} ||p - c||^2,$$

the sum of the squared distances.

induces a partitioning of P

Small dimension d

Large dimension d

Small k

Large k

[ACKS15] Awasthi, Charikar, Krishnaswamy, Sinop. The hardness of approximation of euclidean k-means, SoCG 2015.
 [ADHP09] Aloise, Deshpande, Hansen, Popat: NP-hardness of Euclidean sum-of-squares clustering, Machine Learning, 2009.
 [FL11] Feldman, Langberg, A unified framework for approximating and clustering data, STOC 2011.
 [IKI94] Inaba, Katoh, Imai: Appl. of Weighted Voronoi Diagrams and Rand. to Variance-Based k-Clustering, SoCG 1994.
 [KMN+02] Kanungo, Mount, Netanyahu, Piatko, Silverman, Y. Wu, A local search approx. alg. for k-means clustering, SoCG 2002.
 [LSW13] Lee, S. Wright: Improved and Simplified Inapproximability for k-means, CORR 2015.
 [M00] Matousék: On approximate geometric k-clustering
 [MNV09] Mahajan, Nimbhorkar, Varadarajan, The Planar k-means Problem is NP-Hard, WALCOM 2009.

Small dimension d

Large dimension d

Small k

NP-hard for k = 2 [ADHP09], but PTAS, best running time $\mathcal{O}(nd + 2^{\text{poly}(1/\varepsilon,k)})$ [FL11]

Large k

[ACKS15] Awasthi, Charikar, Krishnaswamy, Sinop. The hardness of approximation of euclidean k-means, SoCG 2015.
 [ADHP09] Aloise, Deshpande, Hansen, Popat: NP-hardness of Euclidean sum-of-squares clustering, Machine Learning, 2009.
 [FL11] Feldman, Langberg, A unified framework for approximating and clustering data, STOC 2011.
 [IKI94] Inaba, Katoh, Imai: Appl. of Weighted Voronoi Diagrams and Rand. to Variance-Based k-Clustering, SoCG 1994.
 [KMN+02] Kanungo, Mount, Netanyahu, Piatko, Silverman, Y. Wu, A local search approx. alg. for k-means clustering, SoCG 2002.
 [LSW13] Lee, S. Wright: Improved and Simplified Inapproximability for k-means, CORR 2015.
 [M00] Matousék: On approximate geometric k-clustering
 [MNV09] Mahajan, Nimbhorkar, Varadarajan, The Planar k-means Problem is NP-Hard, WALCOM 2009.

Small dimension d

Small *k* Optimal solution by enumerating Voronoi diagrams [IKI94] Large dimension d

NP-hard for k = 2 [ADHP09], but PTAS, best running time $\mathcal{O}(nd + 2^{\text{poly}(1/\varepsilon,k)})$ [FL11]

Large k

[ACKS15] Awasthi, Charikar, Krishnaswamy, Sinop. The hardness of approximation of euclidean k-means, SoCG 2015.
 [ADHP09] Aloise, Deshpande, Hansen, Popat: NP-hardness of Euclidean sum-of-squares clustering, Machine Learning, 2009.
 [FL11] Feldman, Langberg, A unified framework for approximating and clustering data, STOC 2011.
 [IKI94] Inaba, Katoh, Imai: Appl. of Weighted Voronoi Diagrams and Rand. to Variance-Based k-Clustering, SoCG 1994.
 [KMN+02] Kanungo, Mount, Netanyahu, Piatko, Silverman, Y. Wu, A local search approx. alg. for k-means clustering, SoCG 2002.
 [LSW13] Lee, S. Wright: Improved and Simplified Inapproximability for k-means, CORR 2015.
 [M00] Matoušek: On approximate geometric k-clustering
 [MNV09] Mahajan, Nimbhorkar, Varadarajan, The Planar k-means Problem is NP-Hard, WALCOM 2009.

	Small dimension d	Large dimension d
Small <i>k</i>	Optimal solution by enumerating Voronoi diagrams [IKI94]	NP-hard for $k = 2$ [ADHP09], but PTAS, best running time $\mathcal{O}(nd + 2^{\text{poly}(1/\varepsilon,k)})$ [FL11]
Large k		$\begin{array}{l} \mbox{APX-hard [ACKS15],} \\ \mbox{factor is} \geq 1.0013 \mbox{[LSW15]} \\ \mbox{and} \leq 9 + \varepsilon \mbox{[KMN+02]} \end{array}$

[ACKS15] Awasthi, Charikar, Krishnaswamy, Sinop. The hardness of approximation of euclidean k-means, SoCG 2015.
 [ADHP09] Aloise, Deshpande, Hansen, Popat: NP-hardness of Euclidean sum-of-squares clustering, Machine Learning, 2009.
 [FL11] Feldman, Langberg, A unified framework for approximating and clustering data, STOC 2011.
 [IKI94] Inaba, Katoh, Imai: Appl. of Weighted Voronoi Diagrams and Rand. to Variance-Based k-Clustering, SoCG 1994.
 [KMN+02] Kanungo, Mount, Netanyahu, Piatko, Silverman, Y. Wu, A local search approx. alg. for k-means clustering, SoCG 2002.
 [LSW13] Lee, S. Wright: Improved and Simplified Inapproximability for k-means, CORR 2015.
 [M00] Matoušek: On approximate geometric k-clustering
 [MNV09] Mahajan, Nimbhorkar, Varadarajan, The Planar k-means Problem is NP-Hard, WALCOM 2009.

	Small dimension d	Large dimension d
Small k	Optimal solution by enumerating Voronoi diagrams [IKI94]	NP-hard for $k = 2$ [ADHP09], but PTAS, best running time $\mathcal{O}(nd + 2^{\text{poly}(1/\varepsilon,k)})$ [FL11]
Large k	NP-hard for $d = 2$ [MNV09] no PTAS known, but no APX-hardness proof either	APX-hard [ACKS15], factor is \geq 1.0013 [LSW15] and \leq 9 + ε [KMN+02]

[ACKS15] Awasthi, Charikar, Krishnaswamy, Sinop. The hardness of approximation of euclidean k-means, SoCG 2015.
 [ADHP09] Aloise, Deshpande, Hansen, Popat: NP-hardness of Euclidean sum-of-squares clustering, Machine Learning, 2009.
 [FL11] Feldman, Langberg, A unified framework for approximating and clustering data, STOC 2011.
 [IKI94] Inaba, Katoh, Imai: Appl. of Weighted Voronoi Diagrams and Rand. to Variance-Based *k*-Clustering, SoCG 1994.
 [KMN+02] Kanungo, Mount, Netanyahu, Piatko, Silverman, Y. Wu, A local search approx. alg. for k-means clustering, SoCG 2002.
 [LSW13] Lee, S. Wright: Improved and Simplified Inapproximability for k-means, CORR 2015.
 [M00] Matoušek: On approximate geometric k-clustering
 [MNV09] Mahajan, Nimbhorkar, Varadarajan, The Planar k-means Problem is NP-Hard, WALCOM 2009.

	Small dimension d	Large dimension d
Small k	Optimal solution by enumerating Voronoi diagrams [IKI94]	NP-hard for $k = 2$ [ADHP09], but PTAS, best running time $\mathcal{O}(nd + 2^{\text{poly}(1/\varepsilon,k)})$ [FL11]
Large k	NP-hard for $d = 2$ [MNV09] no PTAS known, but no APX-hardness proof either	APX-hard [ACKS15], factor is \geq 1.0013 [LSW15] and \leq 9 + ε [KMN+02]

[ACKS15] Awasthi, Charikar, Krishnaswamy, Sinop. The hardness of approximation of euclidean k-means, SoCG 2015.
 [ADHP09] Aloise, Deshpande, Hansen, Popat: NP-hardness of Euclidean sum-of-squares clustering, Machine Learning, 2009.
 [FL11] Feldman, Langberg, A unified framework for approximating and clustering data, STOC 2011.
 [IKI94] Inaba, Katoh, Imai: Appl. of Weighted Voronoi Diagrams and Rand. to Variance-Based k-Clustering, SoCG 1994.
 [KMN+02] Kanungo, Mount, Netanyahu, Piatko, Silverman, Y. Wu, A local search approx. alg. for k-means clustering, SoCG 2002.
 [LSW13] Lee, S. Wright: Improved and Simplified Inapproximability for k-means, CORR 2015.
 [M00] Matousék: On approximate geometric k-clustering
 [MNV09] Mahajan, Nimbhorkar, Varadarajan, The Planar k-means Problem is NP-Hard, WALCOM 2009.

What is the best possible approximation factor?

PTAS for d = 2, constant d?

Reducing vertex cover (\triangle -free) to *k*-means (Awasthi et. al., SoCG 2015)

Reducing vertex cover (\triangle -free) to *k*-means (Awasthi et. al., SoCG 2015)

Vertex Cover instance

Graph G = (V, E)

Reducing vertex cover (\triangle -free) to *k*-means (Awasthi et. al., SoCG 2015)

Vertex Cover instance

Graph G = (V, E)

k-means instance

For e = (i, j), define $x_e \in \mathbb{R}^{|V|}$ by

$$(x_e)_i = (x_e)_i = 1 \text{ and } (x_e)_\ell = 0 \text{ for } \ell \neq i, j$$

 $x_e = (0, \dots, 0, \underbrace{1}_i, 0, \dots, 0, \underbrace{1}_j, 0, \dots, 0)$

 $V_1 V_2 V_3 \dots$ e_1 **10100000000** e2001010000000 e₃00100000010 ė₃00110000000 e₃001001000000 e₃001000100000 $\frac{1}{6}01\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}000\frac{1}{6}0$

Reduction from vertex cover

*v*₁ *v*₂ *v*₃ . . .

 $\begin{array}{c} e_1 \\ 10100000000\\ e_2 \\ 0010100000010\\ e_3 \\ 001100000000\\ e_3 \\ 001001000000\\ e_3 \\ 00100100000\\ e_3 \\ 00100100000\\ \frac{1}{6} \\ 01\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6} \\ 000\frac{1}{6} \\ 0\end{array}$

Cluster cost with (00100000000): |*E*'|

With centroid: |E'| - 1

*v*₁ *v*₂ *v*₃ . . .

Cluster cost with (00100000000): |*E*'|

With centroid: |E'| - 1

Cluster cost with (000000000000): 2|*E*'|

With centroid: 2|E'| - 2

• star cluster E' costs |E'| - 1

• star cluster E' costs |E'| - 1

• small vertex cover implies k star clusters \rightsquigarrow small cost (m - k)

- star cluster E' costs |E'| 1
- small vertex cover implies k star clusters \rightsquigarrow small cost (m k)
- hope: small cost implies many stars and small enough vertex cover

- star cluster E' costs |E'| 1
- small vertex cover implies k star clusters \rightsquigarrow small cost (m k)
- hope: small cost implies many stars and small enough vertex cover

Problem: Triangles

Cluster cost:
$$3 \cdot (2 \cdot \frac{1}{3^2} + (\frac{2}{3})^2) = 3 - 1$$

 $(1 + \varepsilon)$ -hardness for vertex cover in \triangle -free graphs with $D \cdot n$ edges $\downarrow \downarrow$ $(1 + \varepsilon')$ -hardness for *k*-means with $\varepsilon' \in \Theta(\varepsilon/D)$

 $(1 + \varepsilon)$ -hardness for vertex cover in \triangle -free graphs with $D \cdot n$ edges $\downarrow \downarrow$ $(1 + \varepsilon')$ -hardness for *k*-means with $\varepsilon' \in \Theta(\varepsilon/D)$

Awasthi et. al., Part II

APX-hardness for VC in graphs with max. degree D

APX-hardness for VC in \triangle -free graphs with max. degree poly(D, ε^{-1})

 $(1 + \varepsilon)$ -hardness for vertex cover in \triangle -free graphs with $D \cdot n$ edges $\downarrow \downarrow$ $(1 + \varepsilon')$ -hardness for *k*-means with $\varepsilon' \in \Theta(\varepsilon/D)$

Awasthi et. al., Part II

APX-hardness for VC in graphs with max. degree D

APX-hardness for VC in \triangle -free graphs with max. degree poly(D, ε^{-1}) VC in \triangle -free graphs is 1.36-hard

 $(1 + \varepsilon)$ -hardness for vertex cover in \triangle -free graphs with $D \cdot n$ edges $\downarrow \downarrow$ $(1 + \varepsilon')$ -hardness for *k*-means with $\varepsilon' \in \Theta(\varepsilon/D)$

Awasthi et. al., Part II

APX-hardness for VC in graphs with max. degree D

APX-hardness for VC in \triangle -free graphs with max. degree poly(D, ε^{-1})

 $(1 + \varepsilon)$ -hardness for vertex cover in \triangle -free graphs with $D \cdot n$ edges $\downarrow \downarrow$ $(1 + \varepsilon')$ -hardness for *k*-means with $\varepsilon' \in \Theta(\varepsilon/D)$

New Part II

APX-hardness for VC in graphs that are 4-regular \downarrow APX-hardness for VC in \triangle -free graphs and maximum degree 4

 $(1 + \varepsilon)$ -hardness for vertex cover in \triangle -free graphs with $D \cdot n$ edges $\downarrow \downarrow$ $(1 + \varepsilon')$ -hardness for *k*-means with $\varepsilon' \in \Theta(\varepsilon/D)$

New Part II

APX-hardness for VC in graphs that are 4-regular

APX-hardness for VC in \triangle -free graphs and maximum degree 4

Chlebík, Clebíková, 2006

Given a 4-regular graph G, it is NP-hard to distinguish

- *G* has a vertex cover of size $\leq \alpha_{\min} |V(A)|$
- every vertex cover in *G* has size $\geq \alpha_{\max} |V(A)|$

```
Here, \alpha_{\text{max}}/\alpha_{\text{min}} \ge 1.0192.
```

Replace every edge by three edges

Replace every edge by three edges

Replace every edge by three edges ($\rightarrow +4n$ vertices and +4n edges)

Replace every edge by three edges ($\rightarrow +4n$ vertices and +4n edges)

Minimum vertex cover size increases by 2n:

Replace every edge by three edges ($\rightarrow +4n$ vertices and +4n edges)

Minimum vertex cover size increases by 2n:

Replace every edge by three edges ($\rightarrow +4n$ vertices and +4n edges)

Minimum vertex cover size increases by 2n:

Replace every edge by three edges ($\rightarrow +4n$ vertices and +4n edges)

Minimum vertex cover size increases by 2n:

 \rightsquigarrow NP-hard to decide between $\leq (\alpha_{\min} + 2)n$ and $\geq (\alpha_{\max} + 2)n$

 Let E' with |E'| ≥ m/2 be the edges of a large cut

Inapproximability of k-means

- Let E' with |E'| ≥ m/2 be the edges of a large cut
- Pick $E_1 \subseteq E'$ with $|E_1| = m/2 = n$ (E_1 is bipartite)

- Let E' with |E'| ≥ m/2 be the edges of a large cut
- Pick $E_1 \subseteq E'$ with $|E_1| = m/2 = n$
 - $(E_1 \text{ is bipartite})$
- n remaining edges, E₂

- Let E' with |E'| ≥ m/2 be the edges of a large cut
- Pick $E_1 \subseteq E'$ with $|E_1| = m/2 = n$
 - (*E*₁ is bipartite)
- n remaining edges, E₂
- Only split edges in E₂

- Let E' with |E'| ≥ m/2 be the edges of a large cut
- Pick $E_1 \subseteq E'$ with $|E_1| = m/2 = n$
 - $(E_1 \text{ is bipartite})$
- n remaining edges, E₂
- Only split edges in E₂

- Let E' with |E'| ≥ m/2 be the edges of a large cut
- Pick $E_1 \subseteq E'$ with $|E_1| = m/2 = n$
 - (E₁ is bipartite)
- n remaining edges, E₂
- Only split edges in E₂

 \sim 2*n* new edges and vertices, min. vertex cover size increases by *n*

- Let E' with |E'| ≥ m/2 be the edges of a large cut
- Pick $E_1 \subseteq E'$ with $|E_1| = m/2 = n$
 - (E₁ is bipartite)
- n remaining edges, E₂
- Only split edges in E₂

→ 2*n* new edges and vertices, min. vertex cover size increases by *n* → Gap between $(\alpha_{\min} + 1)n$ and $(\alpha_{\max} + 1)n$

APX-hardness for VC in 4-regular graphs

APX-hardness for VC in 4-regular graphs

New Part II

APX-hardness for VC in 4-regular graphs \downarrow APX-hardness for VC in 4-regular \triangle -free graphs

APX-hardness for VC in 4-regular graphs

New Part II

APX-hardness for VC in 4-regular graphs \downarrow APX-hardness for VC in 4-regular \triangle -free graphs

Awasthi et. al., Part I

$(1 + \varepsilon)$ -hardness for vertex cover in \triangle -free graphs with $D \cdot n$ edges $\downarrow \downarrow$ $(1 + \varepsilon')$ -hardness for *k*-means with $\varepsilon' \in \Theta(\varepsilon/D)$

APX-hardness for VC in 4-regular graphs

New Part II

APX-hardness for VC in 4-regular graphs \downarrow APX-hardness for VC in 4-regular \triangle -free graphs

Awasthi et. al., Part I

 $(1 + \varepsilon)$ -hardness for vertex cover in \triangle -free graphs with $D \cdot n$ edges $\downarrow \downarrow$ $(1 + \varepsilon')$ -hardness for *k*-means with $\varepsilon' \in \Theta(\varepsilon/D)$

Theorem

It is NP-hard to approximate k-means within a factor of 1.0013.

APX-hardness for VC in 4-regular graphs

New Part II

APX-hardness for VC in 4-regular graphs \downarrow APX-hardness for VC in 4-regular \triangle -free graphs

Awasthi et. al., Part I

 $(1 + \varepsilon)$ -hardness for vertex cover in \triangle -free graphs with $D \cdot n$ edges $\downarrow \downarrow$ $(1 + \varepsilon')$ -hardness for *k*-means with $\varepsilon' \in \Theta(\varepsilon/D)$

Theorem

It is NP-hard to approximate *k*-means within a factor of 1.0013.

Thanks!

Inapproximability of k-means