Data Streams and Coresets

Probabilistic Coresets

Euclidean k-median

Probabilistic *k*-Median Clustering in Data Streams

WAOA 2012

Christiane Lammersen, Melanie Schmidt, Christian Sohler

13.09.2012

Clustering and Probabilistic Inputs	Data Streams and Coresets	Probabilistic Coresets	Euclidean k-median
Metric Assigned Probabilistic k-Median C	ustering		

ightarrow Partition a set of given objects into subsets of similar objects

 \rightarrow Similarity or Dissimilarity is measured by a distance function

Clustering and Probabilistic Inputs	Data Streams and Coresets	Probabilistic Coresets	Euclidean k-median
Metric Assigned Probabilistic k-Median C	lustering		

ightarrow Partition a set of given objects into subsets of similar objects

 \rightarrow Similarity or Dissimilarity is measured by a distance function

Metric k-median clustering

Clustering and Probabilistic Inputs	Data Streams and Coresets	Probabilistic Coresets	Euclidean k-median
Metric Assigned Probabilistic k-Median C	lustering		

ightarrow Partition a set of given objects into subsets of similar objects

 \rightarrow Similarity or Dissimilarity is measured by a distance function

Metric k-median clustering

Given a set of points *P* from a metric space M = (X, D), find

• a set $C := \{c_1, \ldots, c_k\} \subseteq X$ minimizing

Clustering and Probabilistic Inputs	Data Streams and Coresets	Probabilistic Coresets	Euclidean <i>k</i> -median
Metric Assigned Probabilistic k-Median Cl	ustering		

ightarrow Partition a set of given objects into subsets of similar objects

 \rightarrow Similarity or Dissimilarity is measured by a distance function

Metric k-median clustering

Given a set of points *P* from a metric space M = (X, D), find

• a set $C := \{c_1, \ldots, c_k\} \subseteq X$ minimizing

$$\operatorname{cost}(P,C) := \sum_{i=1}^{n} \min_{c \in C} \operatorname{D}(p_i, c).$$

Clustering and Probabilistic Inputs	Data Streams and Coresets	Probabilistic Coresets	Euclidean <i>k</i> -median	
Metric Assigned Probabilistic k-Median Clustering				

Given a set of points *P* from a metric space M = (X, D), find

• a set $C := \{c_1, \ldots, c_k\} \subseteq X$ minimizing

$$\operatorname{cost}(P,C) := \sum_{i=1}^{n} \min_{c \in C} \operatorname{D}(p_i, c).$$

Clustering and Probabilistic Inputs	Data Streams and Coresets	Probabilistic Coresets	Euclidean <i>k</i> -median
Metric Assigned Probabilistic k-Median C	lustering		

Given a set of points *P* from a metric space M = (X, D), find

• a set $C := \{c_1, \ldots, c_k\} \subseteq X$ minimizing

$$\operatorname{cost}(P,C) := \sum_{i=1}^{n} \min_{c \in C} \operatorname{D}(p_i,c).$$

Clustering and Probabilistic Inputs	Data Streams and Coresets	Probabilistic Coresets	Euclidean <i>k</i> -median
Metric Assigned Probabilistic k-Median C	lustering		

Given a set of points *P* from a metric space M = (X, D), find

• a set $C := \{c_1, \ldots, c_k\} \subseteq X$ minimizing

$$\operatorname{cost}(P,C) := \sum_{i=1}^{n} \min_{c \in C} \operatorname{D}(p_i, c).$$

Clustering and Probabilistic Inputs	Data Streams and Coresets	Probabilistic Coresets	Euclidean k-median
Metric Assigned Probabilistic k-Median Clustering			

Given a set of points *P* from a metric space M = (X, D), find

• a set $C := \{c_1, \ldots, c_k\} \subseteq X$ minimizing

$$\operatorname{cost}(P,C) := \sum_{i=1}^{n} \min_{c \in C} \operatorname{D}(p_i, c).$$

Clustering and Probabilistic Inputs	Data Streams and Coresets	Probabilistic Coresets	Euclidean k-median
Metric Assigned Probabilistic k-Median C	lustering		

Probabilistic Data

- Sensor data
- Database joins
- Movement data

Clustering and Probabilistic Inputs	Data Streams and Coresets	Probabilistic Coresets	Euclidean <i>k</i> -median
Metric Assigned Probabilistic k-Median C	ustering		

Probabilistic Data

- Sensor data
- Database joins
- Movement data

Probabilistic points

For us, a probabilistic point is a discrete probability distribution

Clustering and Probabilistic Inputs	Data Streams and Coresets	Probabilistic Coresets	Euclidean <i>k-</i> median
Metric Assigned Probabilistic k-Median	Clustering		

Given

Clustering and Probabilistic Inputs	Data Streams and Coresets	Probabilistic Coresets	Euclidean <i>k</i> -median	
Metric Assigned Probabilistic k-Median Clustering				

Given

• finite set $\mathcal{X} := \{x_1, \dots, x_m\}$ from metric space M = (X, D),

Clustering and Probabilistic Inputs	Data Streams and Coresets	Probabilistic Coresets	Euclidean <i>k</i> -median	
Metric Assigned Probabilistic k-Median Clustering				

Given

- finite set $\mathcal{X} := \{x_1, \ldots, x_m\}$ from metric space M = (X, D),
- set of nodes *V* : {*v*₁,..., *v*_n}

Clustering and Probabilistic Inputs	Data Streams and Coresets	Probabilistic Coresets	Euclidean <i>k</i> -median	
Metric Assigned Probabilistic k-Median Clustering				

Given

- finite set $\mathcal{X} := \{x_1, \ldots, x_m\}$ from metric space M = (X, D),
- set of nodes *V* : {*v*₁,...,*v*_n}
- probability distribution D_i for each node v_i, given by realization probabilities p_{ij} for all j ∈ [m], ∑_{i=1}^m p_{ij} ≤ 1,

Clustering and Probabilistic Inputs	Data Streams and Coresets	Probabilistic Coresets	Euclidean <i>k-</i> median	
Metric Assigned Probabilistic k-Median Clustering				

Given

- finite set $\mathcal{X} := \{x_1, \ldots, x_m\}$ from metric space M = (X, D),
- set of nodes *V* : {*v*₁,...,*v*_n}
- probability distribution D_i for each node v_i, given by realization probabilities p_{ij} for all j ∈ [m], ∑_{i=1}^m p_{ij} ≤ 1,

find a set $C := \{c_1, \ldots, c_k\} \subseteq X$ that minimizes

$$\mathbf{E}_{\mathcal{D}}\left[\operatorname{cost}(V, C)\right] := \min_{\rho: V \to C} \sum_{i=1}^{n} \sum_{j=1}^{m} p_{ij} \cdot \mathrm{D}(x_j, \rho(v_i)).$$

Clustering and Probabilistic Inputs	Data Streams and Coresets	Probabilistic Coresets	Euclidean k-median

Metric Assigned Probabilistic k-Median Clustering

Related work: Clustering probabilistic Data

Cormode, McGregor (PODS 2008)

- $(1 + \varepsilon)$ -approximation for a variant of the above problem
- $(1 + \varepsilon)$ -approximation for uncertain k-means
- Constant approximation for (assigned) metric k-median
- Bicriteria approximations for uncertain metric k-center

Guha and Munagala (PODS 2009)

• Constant approximation for uncertain metric k-center

Clustering and Probabilistic Inputs	Data Streams and Coresets	Probabilistic Coresets	Euclidean k-median
Coresets for the probabilistic k-median pr	oblem		

Data Streams

- Iarge amounts of data
- data arrives in a stream
- only one pass over the data allowed
- Iimited storage capacity

Clustering and Probabilistic Inputs	Data Streams and Coresets	Probabilistic Coresets	Euclidean k-median
Coresets for the probabilistic k-median pr	oblem		

Data Streams

- Iarge amounts of data
- data arrives in a stream
- only one pass over the data allowed
- Iimited storage capacity

One way to deal with data streams: Coresets

Clustering and Probabilistic Inputs	Data Streams and Coresets ○●○	Probabilistic Coresets	Euclidean k-median
Coresets for the probabilistic k-median pro-	oblem		

Coresets

- small summary of given data
- typically of constant or polylogarithmic size
- can be used to approximate the cost of the original data

Clustering and Probabilistic Inputs	Data Streams and Coresets	Probabilistic Coresets	Euclidean k-median
Coresets for the probabilistic k-median pro	oblem		

Coresets

- small summary of given data
- typically of constant or polylogarithmic size
- can be used to approximate the cost of the original data

Merge & Reduce

- read data in blocks
- compute a coreset for each block $\rightarrow s$
- merge coresets in a tree fashion

• \rightsquigarrow space $s \cdot \log n$

Clustering and Probabilistic Inputs	Data Streams and Coresets ○○●	Probabilistic Coresets	Euclidean <i>k</i> -median
Coresets for the probabilistic k-median pr	oblem		

Related work: Coreset constructions

- '01: Agarwal, Har-Peled and Varadarajan: Coreset concept
- '02: Bǎdoiu, Har-Peled and Indyk: First coreset construction for clustering problems
- '04: Har-Peled and Mazumdar, Coreset of size $\mathcal{O}(k\varepsilon^{-d} \log n)$ for Euclidean *k*-median, maintainable in data streams
- '05: Har-Peled, Kushal: Coreset of size $\mathcal{O}(k^2 \varepsilon^{-d})$ for Euclidean *k*-median
- '05: Frahling and Sohler: Coreset of size $O(k\varepsilon^{-d} \log n)$ for Euclidean *k*-median, insertion-deletion data streams
- '06: Chen: Coresets for metric and Euclidean *k*-median and *k*-means, polynomial in *d*, log *n* and ε^{-1}
- '10: Langberg, Schulman: $\tilde{O}(d^2k^3/\varepsilon^2)$
- '11: Feldman, Langberg: $O(dk/\varepsilon^2)$

Clustering and Probabilistic Inputs	Data Streams and Coresets	Probabilistic Coresets	Euclidean <i>k-</i> median
Our goal	act for the probabilist	ie <i>k</i> medien probl	
Compute a core	set for the probabilist	ic k-median probi	em

Clustering and Probabilistic Inputs	Data Streams and Coresets	Probabilistic Coresets	Euclidean <i>k-</i> median
Our goal			

Compute a coreset for the probabilistic k-median problem

Coresets

Given a set of probabilistic points *V*, a weighted subset *U* is a (k, ε) -coreset if for all sets *C* of *k* centers it holds

$$|\mathsf{E}_{\mathcal{D}'}[\operatorname{cost}_w(U,C)] - \mathsf{E}_{\mathcal{D}}[\operatorname{cost}(V,C)]| \le \varepsilon \mathsf{E}_{\mathcal{D}}[\operatorname{cost}(V,C)]$$

where
$$\mathbf{E}_{\mathcal{D}'}[\operatorname{cost}_w(U, C)] := \min_{\rho: U \to C} \sum_{v_i \in U} \sum_{j=1}^m p'_{ij} w(v_i) D(x_j, \rho(v_i)).$$

Clustering and Probabilistic Inputs	Data Streams and Coresets	Probabilistic Coresets	Euclidean k-median
Our gool			

Our goal

Compute a coreset for the probabilistic k-median problem

Coresets

Given a set of probabilistic points *V*, a weighted subset *U* is a (k, ε) -coreset if for all sets *C* of *k* centers it holds

$$|\mathsf{E}_{\mathcal{D}'}[\operatorname{cost}_w(U,C)] - \mathsf{E}_{\mathcal{D}}[\operatorname{cost}(V,C)]| \le \varepsilon \mathsf{E}_{\mathcal{D}}[\operatorname{cost}(V,C)]$$

where
$$\mathbf{E}_{\mathcal{D}'} [\operatorname{cost}_w(U, C)] := \min_{\rho: U \to C} \sum_{v_i \in U} \sum_{j=1}^m p'_{ij} w(v_i) \mathrm{D}(x_j, \rho(v_i)).$$

|U| and support of probability distributions should be small

Clustering and Probabilistic Inputs	Data Streams and Coresets	Probabilistic Coresets	Euclidean k-median

Idea

Data Streams and Coresets	Probabilistic Coresets	Euclidean k-median
	Data Streams and Coresets	Data Streams and Coresets ooo Probabilistic Coresets o o o

- Extend cost function to a metric
- (so far only defined for a tuple of a node and a center)

Clustering and Probabilistic Inputs	Data Streams and Coresets	Probabilistic Coresets	Euclidean k-median

- Extend cost function to a metric
- (so far only defined for a tuple of a node and a center)
- Point $c \in X \rightsquigarrow$ node with all probability at c

Data Streams and Coresets	Probabilistic Coresets	Euclidean <i>k-</i> median
	Data Streams and Coresets	Data Streams and Coresets Probabilistic Coresets ○○○ ○●○

- Extend cost function to a metric
- (so far only defined for a tuple of a node and a center)
- Point $c \in X \rightsquigarrow$ node with all probability at c
- Generalization of cost function to distance between nodes?

Clustering and Probabilistic Inputs	Data Streams and Coresets	Probabilistic Coresets	Euclidean k-median

- Extend cost function to a metric
- (so far only defined for a tuple of a node and a center)
- Point $c \in X \rightsquigarrow$ node with all probability at c
- Generalization of cost function to distance between nodes?
- Expected distance?

Clustering and Probabilistic Inputs	Data Streams and Coresets	Probabilistic Coresets	Euclidean k-median

- Extend cost function to a metric
- (so far only defined for a tuple of a node and a center)
- Point $c \in X \rightsquigarrow$ node with all probability at c
- Generalization of cost function to distance between nodes?
- Expected distance?
- Expected distance between two copies of the same probabilistic node is not zero

Clustering and Probabilistic Inputs	Data Streams and Coresets	Probabilistic Coresets	Euclidean k-median

- Extend cost function to a metric
- (so far only defined for a tuple of a node and a center)
- Point $c \in X \rightsquigarrow$ node with all probability at c
- Generalization of cost function to distance between nodes?
- Expected distance?
- Expected distance between two copies of the same probabilistic node is not zero
- ~> expected distance is not a metric

Data Streams and Coresets	Probabilistic Coresets	Euclidean <i>k-</i> median
	Data Streams and Coresets	Data Streams and Coresets Probabilistic Coresets ○○○ ○●○

Idea

- Extend cost function to a metric
- (so far only defined for a tuple of a node and a center)
- Point $c \in X \rightsquigarrow$ node with all probability at c
- Generalization of cost function to distance between nodes?

Data Streams and Coresets	Probabilistic Coresets	Euclidean k-median
	Data Streams and Coresets	Data Streams and Coresets Probabilistic Coresets ○○○ ○●○

Idea

- Extend cost function to a metric
- (so far only defined for a tuple of a node and a center)
- Point $c \in X \rightsquigarrow$ node with all probability at c
- Generalization of cost function to distance between nodes?

Data Streams and Coresets	Probabilistic Coresets	Euclidean <i>k-</i> median
	Data Streams and Coresets	Data Streams and Coresets Probabilistic Coresets ○○○ ○●○

Idea

- Extend cost function to a metric
- (so far only defined for a tuple of a node and a center)
- Point $c \in X \rightsquigarrow$ node with all probability at c
- Generalization of cost function to distance between nodes?

Clustering and Probabilistic Inputs	Data Streams and Coresets	Probabilistic Coresets	Euclidean k-median

Clustering and Probabilistic Inputs	Data Streams and Coresets	Probabilistic Coresets	Euclidean <i>k</i> -median

• EMD is a metric

Clustering and Probabilistic Inputs	Data Streams and Coresets	Probabilistic Coresets ○○●	Euclidean <i>k-</i> median

- EMD is a metric
- EMD is a generalization of the cost function

Clustering and Probabilistic Inputs	Data Streams and Coresets	Probabilistic Coresets	Euclidean <i>k</i> -median

- EMD is a metric
- EMD is a generalization of the cost function
- for each $x \in C$, create an artificial node $\rightsquigarrow C'$

Clustering and Probabilistic Inputs	Data Streams and Coresets	Probabilistic Coresets	Euclidean <i>k</i> -median

- EMD is a metric
- EMD is a generalization of the cost function
- for each $x \in C$, create an artificial node $\rightsquigarrow C'$
- A deterministic (k, ε)-coreset for V with center set C' and metric EMD is a probabilistic (k, ε)-coreset

Clustering and Probabilistic Inputs	Data Streams and Coresets	Probabilistic Coresets	Euclidean k-median

- EMD is a metric
- EMD is a generalization of the cost function
- for each $x \in C$, create an artificial node $\rightsquigarrow C'$
- A deterministic (k, ε)-coreset for V with center set C' and metric EMD is a probabilistic (k, ε)-coreset
- if we thin out the probability distributions and

Clustering and Probabilistic Inputs	Data Streams and Coresets	Probabilistic Coresets	Euclidean k-median

- EMD is a metric
- EMD is a generalization of the cost function
- for each $x \in C$, create an artificial node $\rightsquigarrow C'$
- A deterministic (k, ε)-coreset for V with center set C' and metric EMD is a probabilistic (k, ε)-coreset
- if we thin out the probability distributions and
- handle non-uniform realization probabilities.

Clustering and Probabilistic Inputs	Data Streams and Coresets	Probabilistic Coresets	Euclidean <i>k</i> -median

- EMD is a metric
- EMD is a generalization of the cost function
- for each $x \in C$, create an artificial node $\rightsquigarrow C'$
- A deterministic (k, ε)-coreset for V with center set C' and metric EMD is a probabilistic (k, ε)-coreset
- if we thin out the probability distributions and
- handle non-uniform realization probabilities.

(Compute EMD efficiently!)

Clustering and Probabilistic Inputs	Data Streams and Coresets	Probabilistic Coresets	Euclidean <i>k</i> -median ●○○
Partitioning nodes			

Clustering and Probabilistic Inputs	Data Streams and Coresets	Probabilistic Coresets	Euclidean <i>k</i> -median ●○○
Partitioning nodes			

Does the same approach work in the Euclidean case?

Cluste	ering and Probabilistic Inputs	Data Streams and Coresets	Probabilistic Coresets	Euclidean k-median ●○○
Partiti	oning nodes			
	Does the same approach work in the Euclidean case?			

• in the general metric case, C is usually finite (e.g. P)

- in the general metric case, C is usually finite (e.g. P)
- in the Euclidean case, one usually sets $C = \mathbb{R}^d$.

- in the general metric case, C is usually finite (e.g. P)
- in the Euclidean case, one usually sets $C = \mathbb{R}^d$.
- \rightsquigarrow algorithms for the general case do not work here

Does the same approach work in the Euclidean case?

- in the general metric case, C is usually finite (e.g. P)
- in the Euclidean case, one usually sets $C = \mathbb{R}^d$.
- \rightsquigarrow algorithms for the general case do not work here
- even though probabilistic Euclidean k-median can be seen as deterministic metric k-median, we cannot use deterministic algorithms

Does the same approach work in the Euclidean case?

- in the general metric case, C is usually finite (e.g. P)
- in the Euclidean case, one usually sets $C = \mathbb{R}^d$.
- \rightsquigarrow algorithms for the general case do not work here
- even though probabilistic Euclidean k-median can be seen as deterministic metric k-median, we cannot use deterministic algorithms

Develop coreset construction

→ Use deterministic coreset construction by Chen

Clustering and Probabilistic Inputs	Data Streams and Coresets	Probabilistic Coresets	Euclidean <i>k</i> -median ○●○
Partitioning nodes			

Clustering and Probabilistic Inputs	Data Streams and Coresets	Probabilistic Coresets	Euclidean <i>k</i> -median ○●○
Partitioning nodes			
Chen (2006)			

(Clustering and Probabilistic Inputs	Data Streams and Coresets	Probabilistic Coresets	Euclidean <i>k</i> -median
F	Partitioning nodes			
	3			
	Chen (2006) • compute bicrit	eria approximation		

Clustering and Probabilistic Inputs	Data Streams and Coresets	Probabilistic Coresets	Euclidean <i>k</i> -median
Partitioning nodes			

- compute bicriteria approximation
- partition input points into subsets of points which are close to each other compared to the optimal clustering cost

Clustering and Probabilistic Inputs	Data Streams and Coresets	Probabilistic Coresets	Euclidean k-median
Partitioning nodes			

- compute bicriteria approximation
- partition input points into subsets of points which are close to each other compared to the optimal clustering cost
- sample representatives from each subset

Clustering and Probabilistic Inputs	Data Streams and Coresets	Probabilistic Coresets	Euclidean k-median
Partitioning nodes			

- compute bicriteria approximation
- partition input points into subsets of points which are close to each other compared to the optimal clustering cost
- sample representatives from each subset

Clustering and Probabilistic Inputs	Data Streams and Coresets	Probabilistic Coresets	Euclidean <i>k</i> -median
Partitioning nodes			

- compute bicriteria approximation
- partition input points into subsets of points which are close to each other compared to the optimal clustering cost
- sample representatives from each subset

Clustering and Probabilistic Inputs	Data Streams and Coresets	Probabilistic Coresets	Euclidean k-median
Partitioning nodes			

- compute bicriteria approximation
- partition input points into subsets of points which are close to each other compared to the optimal clustering cost
- sample representatives from each subset

Clustering and Probabilistic Inputs	Data Streams and Coresets	Probabilistic Coresets	Euclidean k-median
Partitioning nodes			

- compute bicriteria approximation
- partition input points into subsets of points which are close to each other compared to the optimal clustering cost
- sample representatives from each subset

Clustering and Probabilistic Inputs	Data Streams and Coresets	Probabilistic Coresets	Euclidean k-median
Partitioning nodes			

- compute bicriteria approximation
- partition input points into subsets of points which are close to each other compared to the optimal clustering cost
- sample representatives from each subset

Clustering and Probabilistic Inputs	Data Streams and Coresets	Probabilistic Coresets	Euclidean k-median
Partitioning nodes			

Theorem

We can compute a probabilistic (k, ε) -coreset of size

$$\mathcal{O}(k^2 \varepsilon^{-3} \cdot \mathsf{polylog}(|\mathcal{C}|, n, \delta, 1/p_{\mathsf{min}}))$$

for the probabilistic metric k-median problem and of size

$$\mathcal{O}(k^2 \varepsilon^{-2} d \cdot \text{polylog}(n, \delta, \varepsilon^{-1}, 1/p_{\min}))$$

for the probabilistic Euclidean k-median problem.

Clustering and Probabilistic Inputs	Data Streams and Coresets	Probabilistic Coresets	Euclidean <i>k</i> -median
Partitioning nodes			

Theorem

We can compute a probabilistic (k, ε) -coreset of size

$$\mathcal{O}(k^2 \varepsilon^{-3} \cdot \mathsf{polylog}(|\mathcal{C}|, n, \delta, 1/p_{\mathsf{min}}))$$

for the probabilistic metric k-median problem and of size

$$\mathcal{O}(k^2 \varepsilon^{-2} d \cdot \text{polylog}(n, \delta, \varepsilon^{-1}, 1/p_{\min}))$$

for the probabilistic Euclidean k-median problem.

Thank you for your attention!