General Case

Testing Euclidean Spanners

F. Hellweg, M. Schmidt, C. Sohler

06.09.2010

Introduction ●0000	Special Case	General Case	End
Euclidean Spanners and Pro	operty Testing		

Introduction ●0000	Special Case	General Case	End
Euclidean Spanners and Property Testir	ng		

Introduction ●0000	Special Case	General Case	End
Euclidean Spanners and Property Testir	ng		

Introduction ●0000	Special Case	General Case	End
Euclidean Spanners and Property Testin	ng		

Introduction •0000	Special Case	General Case	End
Euclidean Spanners and Property Testi	ng		

Let $0 < \delta < 1$ and *P* a set of points in \mathbb{R}^d for constant *d*.

Let $0 < \delta < 1$ and *P* a set of points in \mathbb{R}^d for constant *d*.

Is there a violating pair of points $p,q \in P$ such that $d_G(p,q) > (1+\delta)||q-p||_2$?

Introduction ●○○○○	Special Case	General Case ০০০০	End
Euclidean Spanners and Property Testin	ng		

Let $0 < \delta < 1$ and *P* a set of points in \mathbb{R}^d for constant *d*.

Definition (Euclidian $(1 + \delta)$ -spanner)

A directed geometric graph G = (P, E) is a $(1 + \delta)$ -spanner, if

 $\forall p, q \in P : d_G(p,q) \leq (1+\delta) ||q-p||_2$

where $d_G(p, q)$ denotes the graph distance between p and q.

Is there a violating pair of points $p, q \in P$ such that $d_G(p,q) > (1 + \delta)||q - p||_2$?

Introduction ○●○○○	Special Case	General Case	End
Euclidean Spanners and F	Property Testing		

Introduction 00000	Special Case ০০০০০০	General Case	End
Euclidean Spanners and Property Testir	ıg		

Wireless ad-hoc networks

- changing network structure
- do the established links still satisfy the spanner property?
- fast test required

Introduction 00000	Special Case	General Case	End
Euclidean Spanners and Property Testin	g		

Wireless ad-hoc networks

- changing network structure
- do the established links still satisfy the spanner property?
- fast test required

Aim

Find a sublinear testing algorithm that

- always accepts $(1 + \delta)$ -spanners
- rejects graphs that are very far away from being a spanner
- (deals with other graphs as it likes)
- returns a violating pair when rejecting a graph

Introduction 00000	Special Case	General Case	End
Euclidean Spanners and Property Testin	g		

Wireless ad-hoc networks

- changing network structure
- do the established links still satisfy the spanner property?
- fast test required

Aim

Find a sublinear testing algorithm that

- always accepts $(1 + \delta)$ -spanners
- rejects graphs that are very far away from being a spanner
- (deals with other graphs as it likes)
- returns a violating pair when rejecting a graph

Sublinear ~> randomized algorithm with (small) error probability.

Introduction	Special Case	General Case	End
00000	000000	0000	

Euclidean Spanners and Property Testing

Geometric Property Testing

Introduction 00000	Special Case	General Case	End
Euclidean Spanners and Property Tes	ting		

Geometric Property Testing

Property Testing

- provides a relaxation of decision problems
- introduced by Rubinfeld and Sudan (1996)
- study of combinatorial properties: Goldreich, Goldwasser, and Ron (1998)

Introduction 00000	Special Case	General Case	End
Euclidean Spanners and Property Tes	sting		

Geometric Property Testing

Property Testing

- provides a relaxation of decision problems
- introduced by Rubinfeld and Sudan (1996)
- study of combinatorial properties: Goldreich, Goldwasser, and Ron (1998)

Geometric Properties

- Euclidean minimum spanning tree: Czumaj, Sohler, Ziegler (2000)
- Clusterability of point sets: Alon, Dar, Parnas, Ron (2003)
- Convexity: Rademacher, Vempala (2004)

Introduction 00000	Special Case	General Case	End
Euclidean Spanners and Property Testir	ng		

Introduction	Special Case	General Case	End
00000	০০০০০০	0000	
Euclidean Spanners and Property Testir	ng		

Let $0 < \varepsilon < 1$ and $0 < \delta < 1$.

Definition

A directed geometric graph G = (P, E) is ε -far from a directed geometric graph G' = (P, E') if

$$E \setminus E' \cup E' \setminus E| > \varepsilon n.$$

G is ε -far from having the property to be a $(1 + \delta)$ -spanner if it is ε -far from every $(1 + \delta)$ -spanner.

Introduction	Special Case	General Case	End
00000	০০০০০০	0000	
Euclidean Spanners and Property Testir	ng		

Let $0 < \varepsilon < 1$ and $0 < \delta < 1$.

Definition

A directed geometric graph G = (P, E) is ε -far from a directed geometric graph G' = (P, E') if

$$E \setminus E' \cup E' \setminus E| > \varepsilon n.$$

G is ε -far from having the property to be a $(1 + \delta)$ -spanner if it is ε -far from every $(1 + \delta)$ -spanner.

Introduction	Special Case	General Case	End
00000	000000	0000	
Euclidean Spanners and Property Testir	g		

Let $0 < \varepsilon < 1$ and $0 < \delta < 1$.

Definition

A directed geometric graph G = (P, E) is ε -far from a directed geometric graph G' = (P, E') if

$$E \setminus E' \cup E' \setminus E| > \varepsilon n.$$

G is ε -far from having the property to be a $(1 + \delta)$ -spanner if it is ε -far from every $(1 + \delta)$ -spanner.

Introduction 0000●	Special Case	General Case	End
Euclidean Spanners and Property Testin	a		

Aim

Find a sublinear testing algorithm that

- always accepts $(1 + \delta)$ -spanners
- rejects graphs ε-far from being a spanner w.h.p.
- (deals with other graphs as it likes)
- returns a violating pair when rejecting a graph

Challenge: Find one of εn violating pairs with few sample points

Introduction 0000●	Special Case	General Case	End
Euclidean Spanners and Property Testin	a		

Aim

Find a sublinear testing algorithm that

- always accepts $(1 + \delta)$ -spanners
- rejects graphs ε-far from being a spanner w.h.p.
- (deals with other graphs as it likes)
- returns a violating pair when rejecting a graph

Challenge: Find one of εn violating pairs with few sample points

Note

- not necessarily *cn* distinct points
- compared to $\Omega(n^2)$ possible pairs of points, εn is small

Special case

- G: directed geometric graph
- nu: value depending on
 - *n*, $1/\delta$ and $1/\varepsilon$
- H: d-dimensional grid
 - containing O(n_u) points of G in each cell
 - covering G completely

We say G is uniformly distributed with parameter n_u .

Special case

- G: directed geometric graph
- nu: value depending on
 - *n*, $1/\delta$ and $1/\varepsilon$
- H: d-dimensional grid
 - containing O(n_u) points of G in each cell
 - covering G completely

We say G is uniformly distributed with parameter n_u .

 \rightsquigarrow for every point *p*, number of points close to *p* is $\approx n_u$

ntroduction	Special Case	General Case	End

Coping with far-away errors

Introduction 00000	Special Case	General Case	End

Coping with far-away errors

Distant violating pairs

Special Case	General Case	End
	Special Case o●oooo	Special Case General Case 0 • 0 0 0 0 0 0 0 0

Coping with far-away errors

Find a violating pair

- ε -far \rightsquigarrow at least εn violating pairs
- establish property for all distant pairs with $\varepsilon n/2$ edges
- $\varepsilon n/2$ violating pairs with small distance remain

Introduction	Special Case	General Case	End
Uniformly spread points			

Introduction	Special Case oo●ooo	General Case 0000	End
Uniformly spread points			

Introduction	Special Case ○○●○○○	General Case	End
Uniformly spread points			

For all cells of H:

 define neighborhood N_c large enough such that distance dominates cell diameter (width c · w₀)

Introduction 00000	Special Case	General Case	End

Coping with far-away errors

- define neighborhood N_c large enough such that distance dominates cell diameter (width c · w₀)
- add one edge to every cell within a certain distance

Introduction 00000	Special Case	General Case	End
Uniformly spread points			

- define neighborhood N_c large enough such that distance dominates cell diameter (width c · w₀)
- add one edge to every cell within a certain distance

Introduction	Special Case	General Case	End
00000	00000	0000	

Coping with far-away errors

- define neighborhood N_c large enough such that distance dominates cell diameter (width c · w₀)
- add one edge to every cell within a certain distance
- grow distance and cell diameter simultaneously

Introduction	Special Case	General Case	End
00000	00000	0000	

Coping with far-away errors

- define neighborhood N_c large enough such that distance dominates cell diameter (width c · w₀)
- add one edge to every cell within a certain distance
- grow distance and cell diameter simultaneously

Introduction	Special Case	General Case	End
Uniformly spread points			

Assure the following:

 If all neighbors satisfy spanner property, extended graph is a spanner

(To prove this, recursively apply grid property)

Introduction	Special Case	General Case	End

Coping with far-away errors

Assure the following:

- If all neighbors satisfy spanner property, extended graph is a spanner
- Number of cells in each level is constant
- Number of all edges in all exponential grids is at most εn/2

Introduction	Special Case	General Case	End
00000	00000	0000	

Coping with far-away errors

Assure the following:

- If all neighbors satisfy spanner property, extended graph is a spanner
- Number of cells in each level is constant
- Number of all edges in all exponential grids is at most εn/2

Exponential grids: Har-Peled, Mazumdar (2004)

Introduction	Special Case ○○○●○○	General Case	End
Uniformly spread points			
The algorithm			

Introduction	Special Case	General Case	End
Uniformly spread points			

The algorithm

- Sample $q_s = \tilde{\mathcal{O}}(\delta^{-d}\varepsilon^{-2}\sqrt{n})$ points
- For every sample point p
 - Sample all q_n points within radius $(1 + \delta)\sqrt{d} \cdot c \cdot w_0$ of p
 - \rightarrow if a neighbor q of p is not found, then (p, q) is violating

Accept graph iff no violating pair was found

Introduction	Special Case	General Case	End
Uniformly spread points			

The algorithm

- Sample $q_s = \tilde{O}(\delta^{-d} \varepsilon^{-2} \sqrt{n})$ points
- For every sample point p
 - Sample all q_n points within radius $(1 + \delta)\sqrt{d} \cdot c \cdot w_0$ of p
 - \rightarrow if a neighbor q of p is not found, then (p, q) is violating
- Accept graph iff no violating pair was found

Observation

•
$$n_u = \mathcal{O}(\delta^{-d}\varepsilon^{-1}\log\delta n)$$

$$\rightsquigarrow q_n = \mathcal{O}(\delta^{-d}\varepsilon^{-1}\log\delta n)$$

- $\rightsquigarrow q_s + q_s \cdot q_n = ilde{\mathcal{O}} \left(\delta^{-2d} arepsilon^{-3} D \sqrt{n}
 ight)$ queries
 - The algorithm accepts every spanner with probability 1.
 - In case of rejection, a violating pair was found.

Introduction 00000	Special Case	General Case	End
Uniformly spread points			

Introduction	Special Case	General Case	End
00000	oooo●o	oooo	
Uniformly spread points			

Problem

How do we figure out that there is a neighbor q of p that was not found during the exploration of p's neighborhood?

 \rightsquigarrow only possible if *p* and *q* were sampled.

Introduction 00000	Special Case	General Case	End
Uniformly spread points			

Problem

How do we figure out that there is a neighbor q of p that was not found during the exploration of p's neighborhood?

 \rightsquigarrow only possible if *p* and *q* were sampled.

Birthday paradox type argument

- to sample √n disjoint points p having a neighbor q such that (p, q) is violating, only Õ(ε⁻¹√n) samples are necessary
- this ensures that there are √n points q such that p is sampled and (p, q) form a violating pair
- to find one of these, $\tilde{\mathcal{O}}(\sqrt{n})$ additional samples needed

Introduction 00000	Special Case	General Case	End
Uniformly spread points			

Let
$$0 < \delta < 1$$
 and $0 < \varepsilon < 1$.

Theorem

Under the condition that the directed geometric graph G = (P, E) is uniformly distributed with

$$n_u = \mathcal{O}(\delta^{-d}\varepsilon^{-1}\log\delta n)$$

we can decide w.h.p. whether G is an Euclidean spanner or ε -far from this property with runtime and query complexity

$$\tilde{\mathcal{O}}\left(\delta^{-2d}\varepsilon^{-3}D\sqrt{n}
ight).$$

Introduction 00000	Special Case	General Case ●000	End
Arbitrary point sets			

Introduction 00000	Special Case	General Case	End
Arbitrary point sets			

Generalization

- Assume point coordinates are integer and on a d-dimensional grid {1,..., Δ}^d.
- Replace grid H by a quad-tree

Problem

The neighborhood of a base cell (of the quad-tree) can now contain many cells. Such base cells are denoted as heavy cells.

- stop partitioning at logarithmic number of points
- many cells can lie in the neighborhood of a large cell

Introduction	Special Case ০০০০০০	General Case o●oo	End
Arbitrary point sets			

Coping with heavy cells

Problem

Neighborhood of a large cell can contain many smaller cells.

Introduction 00000	Special Case	General Case o●oo	End
Arbitrary point sets			

Coping with heavy cells

Problem

Neighborhood of a large cell can contain many smaller cells.

Observation

A small cell can not be in the neighborhood of many larger cells. (the number is bounded from above by $\mathcal{O}(\log \Delta)$).

- bound on the number of relations of the kind 'small cell in neighborhood of larger cell'
- \leadsto bound on the number of heavy cells

General Case

Lemma

If all pairs of a point *p* in cells that are not heavy and a neighbor *q* of *p* satisfy the spanner property, then the property can be satisfied for all remaining pairs by adding $\varepsilon n/2$ edges.

General Case

Let $0 < \delta < 1$ and $0 < \varepsilon < 1$.

Theorem

We can decide w.h.p. whether a directed geometric graph G = (P, E) placed on a $\{1, ..., \Delta\}^d$ -grid is an Euclidean spanner or ε -far from this property with runtime and query complexity

 $\tilde{\mathcal{O}}(\delta^{-5d}\epsilon^{-5}D\log^6\Delta\sqrt{n}).$

Open problems

- Match upper and lower bound [currently $\Omega(n^{1/3})$].
- Can the exponential influence of the dimension be avoided?
- What about the grid width Δ?
- Can point coordinates contribute more information?
- Which query complexity is needed to test the spanner property for different metrics?

Thank you for your attention!