# Dimensionality reductions for $k$-means 

Melanie Schmidt

19.05.2015

## The $k$-means problem



## The $k$-means problem

- Given a point set $P \subseteq \mathbb{R}^{d}$,






## The $k$-means problem

- Given a point set $P \subseteq \mathbb{R}^{d}$,
- compute a set $C \subseteq \mathbb{R}^{d}$ with $|C|=k$ centers
- which minimizes $\operatorname{cost}(P, C)$

$$
=\sum_{p \in P} \min _{c \in C}\|p-c\|^{2},
$$

the sum of the squared distances.


## The $k$-means problem

- Given a point set $P \subseteq \mathbb{R}^{d}$,
- compute a set $C \subseteq \mathbb{R}^{d}$ with $|C|=k$ centers
- which minimizes $\operatorname{cost}(P, C)$

$$
=\sum_{p \in P} \min _{c \in C}\|p-c\|^{2},
$$

the sum of the squared distances.

- induces a partitioning of the input point set
$k$-means is studied since the 50 s
- defined around 1950
- Lloyd's algorithm in 1957
- various algorithms for the $k$-means problem
$k$-means is studied since the 50 s
- defined around 1950
- Lloyd's algorithm in 1957
- various algorithms for the $k$-means problem
$k$-means is still widely studied, new theoretical insights
$k$-means is studied since the 50 s
- defined around 1950
- Lloyd's algorithm in 1957, 2500 new citations since 2011
- various algorithms for the $k$-means problem
$k$-means is still widely studied, new theoretical insights
$k$-means is studied since the 50 s
- defined around 1950
- Lloyd's algorithm in 1957, 2500 new citations since 2011
- various algorithms for the $k$-means problem
$k$-means is still widely studied, new theoretical insights
- Analysis of Lloyd's algorithm (running time) in [AV06,V11]
$k$-means is studied since the 50 s
- defined around 1950
- Lloyd's algorithm in 1957, 2500 new citations since 2011
- various algorithms for the $k$-means problem
$k$-means is still widely studied, new theoretical insights
- Analysis of Lloyd's algorithm (running time) in [AV06,V11]
- constant approximation algorithms [JV01],[KM+04]
$k$-means is studied since the 50 s
- defined around 1950
- Lloyd's algorithm in 1957, 2500 new citations since 2011
- various algorithms for the $k$-means problem
$k$-means is still widely studied, new theoretical insights
- Analysis of Lloyd's algorithm (running time) in [AV06,V11]
- constant approximation algorithms [JV01],[KM+04]
- PTAS for constant $k$ [M00,dIV+03]
$k$-means is studied since the 50 s
- defined around 1950
- Lloyd's algorithm in 1957, 2500 new citations since 2011
- various algorithms for the $k$-means problem
$k$-means is still widely studied, new theoretical insights
- Analysis of Lloyd's algorithm (running time) in [AV06,V11]
- constant approximation algorithms [JV01],[KM+04]
- PTAS for constant $k$ [M00,dlV+03], now $\mathcal{O}\left(n d+2^{\text {poly }(1 / \varepsilon, k)}\right)$ [FL11]
$k$-means is studied since the 50 s
- defined around 1950
- Lloyd's algorithm in 1957, 2500 new citations since 2011
- various algorithms for the $k$-means problem
$k$-means is still widely studied, new theoretical insights
- Analysis of Lloyd's algorithm (running time) in [AV06,V11]
- constant approximation algorithms [JV01],[KM+04]
- PTAS for constant $k$ [M00,dIV+03], now $\mathcal{O}\left(n d+2^{\text {poly }(1 / \varepsilon, k)}\right)$ [FL11]
- k-means++ [AV07]
$k$-means is studied since the 50 s
- defined around 1950
- Lloyd's algorithm in 1957, 2500 new citations since 2011
- various algorithms for the $k$-means problem
$k$-means is still widely studied, new theoretical insights
- Analysis of Lloyd's algorithm (running time) in [AV06,V11]
- constant approximation algorithms [JV01],[KM+04]
- PTAS for constant $k$ [M00,dIV+03], now $\mathcal{O}\left(n d+2^{\text {poly }(1 / \varepsilon, k)}\right)$ [FL11]
- k-means++ [AV07]

Hardness of $k$-means
$k$-means is studied since the 50 s

- defined around 1950
- Lloyd's algorithm in 1957, 2500 new citations since 2011
- various algorithms for the $k$-means problem
$k$-means is still widely studied, new theoretical insights
- Analysis of Lloyd's algorithm (running time) in [AV06,V11]
- constant approximation algorithms [JV01],[KM+04]
- PTAS for constant $k$ [M00, dIV +03$]$, now $\mathcal{O}\left(n d+2^{\text {poly }(1 / \varepsilon, k)}\right)$ [FL11]
- k-means++ [AV07]

Hardness of $k$-means

- $k$-means is NP-hard for $k=2$ [ADHP09]
$k$-means is studied since the 50 s
- defined around 1950
- Lloyd's algorithm in 1957, 2500 new citations since 2011
- various algorithms for the $k$-means problem
$k$-means is still widely studied, new theoretical insights
- Analysis of Lloyd's algorithm (running time) in [AV06,V11]
- constant approximation algorithms [JV01],[KM+04]
- PTAS for constant $k$ [M00, dIV +03$]$, now $\mathcal{O}\left(n d+2^{\text {poly }(1 / \varepsilon, k)}\right)$ [FL11]
- k-means++ [AV07]

Hardness of $k$-means

- $k$-means is NP-hard for $k=2$ [ADHP09], also for $d=2$ [MNV09]
$k$-means is studied since the 50 s
- defined around 1950
- Lloyd's algorithm in 1957, 2500 new citations since 2011
- various algorithms for the $k$-means problem
$k$-means is still widely studied, new theoretical insights
- Analysis of Lloyd's algorithm (running time) in [AV06,V11]
- constant approximation algorithms [JV01],[KM+04]
- PTAS for constant $k$ [M00,dlV +03$]$, now $\mathcal{O}\left(n d+2^{\text {poly }(1 / \varepsilon, k)}\right)[F L 11]$
- $k$-means++ [AV07]


## Hardness of $k$-means

- $k$-means is NP-hard for $k=2$ [ADHP09], also for $d=2$ [MNV09]
- it is NP-hard to $c$-approximate for a small $c>1$ [ACKS15]
$k$-means is studied since the 50 s
- defined around 1950
- Lloyd's algorithm in 1957, 2500 new citations since 2011
- various algorithms for the $k$-means problem
$k$-means is still widely studied, new theoretical insights
- Analysis of Lloyd's algorithm (running time) in [AV06,V11]
- constant approximation algorithms [JV01],[KM+04]
- PTAS for constant $k$ [M00,dlV +03$]$, now $\mathcal{O}\left(n d+2^{\text {poly }(1 / \varepsilon, k)}\right)[F L 11]$
- $k$-means++ [AV07]


## Hardness of $k$-means

- $k$-means is NP-hard for $k=2$ [ADHP09], also for $d=2$ [MNV09]
- it is NP-hard to $c$-approximate for a small $c>1$ [ACKS15]
- ( $c \geq 1.001418$ )


## High dimensional data

- Assume that $d$ is much larger than $k$
- Do we need to solve a $d$-dimensional problem?


## High dimensional data

- Assume that $d$ is much larger than $k$
- Do we need to solve a $d$-dimensional problem?


## Some answers

- [JL84] $\mathcal{O}\left(\varepsilon^{-2} \log n\right)$ dimensions suffice for a $(1+\varepsilon)$-approximation
- [DF+99] $k$ dimensions suffice for a 2 -approximation


## High dimensional data

- Assume that $d$ is much larger than $k$
- Do we need to solve a $d$-dimensional problem?


## Some answers

- [JL84] $\mathcal{O}\left(\varepsilon^{-2} \log n\right)$ dimensions suffice for a $(1+\varepsilon)$-approximation
- [DF+99] $k$ dimensions suffice for a 2 -approximation

How many dimensions do we need to approximately solve $k$-means?

## Dimensionality reduction <br> Replace $P$ by a point set $Q$ of smaller intrinsic dimension

## Dimensionality reduction

Replace $P$ by a point set $Q$ of smaller intrinsic dimension


## Dimensionality reduction

Replace $P$ by a point set $Q$ of smaller intrinsic dimension


## Dimensionality reduction

Replace $P$ by a point set $Q$ of smaller intrinsic dimension



## Dimensionality reduction

Replace $P$ by a point set $Q$ of smaller intrinsic dimension

$\overbrace{0}$


$$
\rightarrow \pi: \mathbb{R}^{d} \rightarrow \mathbb{R}^{m}
$$

## Dimensionality reduction

Replace $P$ by a point set $Q$ of smaller intrinsic dimension



## Dimensionality reduction

$P \subset \mathbb{R}^{d}$ is replaced by $Q \subset \mathbb{R}^{d}$ of smaller intrinsic dimension such that

$$
|\operatorname{cost}(Q, C)-\operatorname{cost}(P, C)| \leq \varepsilon \cdot \operatorname{cost}(P, C)
$$

holds for all sets $C \subset \mathbb{R}^{d}$ of $k$ centers.

## In the following

## In the following

- Facts on $k$-means and JL result


## In the following

- Facts on $k$-means and JL result
- Joint work with Dan Feldman and Christian Sohler


## In the following

- Facts on $k$-means and JL result
- Joint work with Dan Feldman and Christian Sohler
- STOC '15 paper due to Cohen et. al.


## Fact 1 [Foklore?]

It holds for any $P \subset \mathbb{R}^{d}$ and any $z \in \mathbb{R}^{d}$ that

$$
\sum_{x \in P}\|x-z\|^{2}=\sum_{x \in P}\|x-\mu(P)\|^{2}+|P| \cdot\|\mu(P)-z\|^{2},
$$

where $\mu(P)=\sum_{x \in P} x /|P|$ is the centroid of $P$.

## Fact 1 [Foklore?]

It holds for any $P \subset \mathbb{R}^{d}$ and any $z \in \mathbb{R}^{d}$ that

$$
\sum_{x \in P}\|x-z\|^{2}=\sum_{x \in P}\|x-\mu(P)\|^{2}+|P| \cdot\|\mu(P)-z\|^{2},
$$

where $\mu(P)=\sum_{x \in P} x /|P|$ is the centroid of $P$.


## Fact 1 [Foklore?]

It holds for any $P \subset \mathbb{R}^{d}$ and any $z \in \mathbb{R}^{d}$ that

$$
\sum_{x \in P}\|x-z\|^{2}=\sum_{x \in P}\|x-\mu(P)\|^{2}+|P| \cdot\|\mu(P)-z\|^{2}
$$

where $\mu(P)=\sum_{x \in P} X /|P|$ is the centroid of $P$.


## Implications

- centroid is always the optimal 1-means solution
- optimal solution consists of centroids of subsets

It holds for any $P \subset \mathbb{R}^{d}$ and any $z \in \mathbb{R}^{d}$ that

$$
\sum_{x \in P}\|x-z\|^{2}=\sum_{x \in P}\|x-\mu(P)\|^{2}+|P| \cdot\|\mu(P)-z\|^{2}
$$

where $\mu(P)=\sum_{x \in P^{x}} x|P|$ is the centroid of $P$.

It holds for any $P \subset \mathbb{R}^{d}$ and any $z \in \mathbb{R}^{d}$ that

$$
\sum_{x \in P}\|x-z\|^{2}=\sum_{x \in P}\|x-\mu(P)\|^{2}+|P| \cdot\|\mu(P)-z\|^{2}
$$

where $\mu(P)=\sum_{x \in P} x /|P|$ is the centroid of $P$.

## Corollary (Fact 2)

The optimal 1 -means cost of any $P \subset \mathbb{R}^{d}$ is given by

$$
\sum_{x \in P}\|x-\mu(P)\|^{2}=\frac{1}{2|P|} \sum_{x \in P} \sum_{y \in P}\|x-y\|^{2} .
$$

It holds for any $P \subset \mathbb{R}^{d}$ and any $z \in \mathbb{R}^{d}$ that

$$
\sum_{x \in P}\|x-z\|^{2}=\sum_{x \in P}\|x-\mu(P)\|^{2}+|P| \cdot\|\mu(P)-z\|^{2}
$$

where $\mu(P)=\sum_{x \in P^{x}} /|P|$ is the centroid of $P$.

## Corollary (Fact 2)

The optimal 1 -means cost of any $P \subset \mathbb{R}^{d}$ is given by

$$
\sum_{x \in P}\|x-\mu(P)\|^{2}=\frac{1}{2|P|} \sum_{x \in P} \sum_{y \in P}\|x-y\|^{2}
$$

$$
\sum_{z \in P} \sum_{x \in P}\|x-z\|^{2}
$$

It holds for any $P \subset \mathbb{R}^{d}$ and any $z \in \mathbb{R}^{d}$ that

$$
\sum_{x \in P}\|x-z\|^{2}=\sum_{x \in P}\|x-\mu(P)\|^{2}+|P| \cdot\|\mu(P)-z\|^{2}
$$

where $\mu(P)=\sum_{x \in P^{x}} /|P|$ is the centroid of $P$.

## Corollary (Fact 2)

The optimal 1 -means cost of any $P \subset \mathbb{R}^{d}$ is given by

$$
\sum_{x \in P}\|x-\mu(P)\|^{2}=\frac{1}{2|P|} \sum_{x \in P} \sum_{y \in P}\|x-y\|^{2}
$$

$$
\sum_{z \in P} \sum_{x \in P}\|x-z\|^{2}=\sum_{z \in P}
$$

It holds for any $P \subset \mathbb{R}^{d}$ and any $z \in \mathbb{R}^{d}$ that

$$
\sum_{x \in P}\|x-z\|^{2}=\sum_{x \in P}\|x-\mu(P)\|^{2}+|P| \cdot\|\mu(P)-z\|^{2}
$$

where $\mu(P)=\sum_{x \in P^{x}} /|P|$ is the centroid of $P$.

## Corollary (Fact 2)

The optimal 1 -means cost of any $P \subset \mathbb{R}^{d}$ is given by

$$
\sum_{x \in P}\|x-\mu(P)\|^{2}=\frac{1}{2|P|} \sum_{x \in P} \sum_{y \in P}\|x-y\|^{2}
$$

$$
\sum_{z \in P} \sum_{x \in P}\|x-z\|^{2}=\sum_{z \in P}\left(\sum_{x \in P}\|x-\mu(P)\|^{2}+|P| \cdot\|\mu(P)-z\|^{2}\right)
$$

It holds for any $P \subset \mathbb{R}^{d}$ and any $z \in \mathbb{R}^{d}$ that

$$
\sum_{x \in P}\|x-z\|^{2}=\sum_{x \in P}\|x-\mu(P)\|^{2}+|P| \cdot\|\mu(P)-z\|^{2}
$$

where $\mu(P)=\sum_{x \in P^{x}} /|P|$ is the centroid of $P$.

## Corollary (Fact 2)

The optimal 1 -means cost of any $P \subset \mathbb{R}^{d}$ is given by

$$
\sum_{x \in P}\|x-\mu(P)\|^{2}=\frac{1}{2|P|} \sum_{x \in P} \sum_{y \in P}\|x-y\|^{2}
$$

$$
\sum_{z \in P} \sum_{x \in P}\|x-z\|^{2}=\sum_{z \in P}\left(\sum_{x \in P}\|x-\mu(P)\|^{2}+|P| \cdot\|\mu(P)-z\|^{2}\right)
$$

It holds for any $P \subset \mathbb{R}^{d}$ and any $z \in \mathbb{R}^{d}$ that

$$
\sum_{x \in P}\|x-z\|^{2}=\sum_{x \in P}\|x-\mu(P)\|^{2}+|P| \cdot\|\mu(P)-z\|^{2}
$$

where $\mu(P)=\sum_{x \in P} x /|P|$ is the centroid of $P$.

## Corollary (Fact 2)

The optimal 1 -means cost of any $P \subset \mathbb{R}^{d}$ is given by

$$
\sum_{x \in P}\|x-\mu(P)\|^{2}=\frac{1}{2|P|} \sum_{x \in P} \sum_{y \in P}\|x-y\|^{2}
$$

$$
\begin{aligned}
\sum_{z \in P} \sum_{x \in P}\|x-z\|^{2} & =\sum_{z \in P}\left(\sum_{x \in P}\|x-\mu(P)\|^{2}+|P| \cdot\|\mu(P)-z\|^{2}\right) \\
& =|P| \sum_{x \in P}\|x-\mu(P)\|^{2}+|P| \sum_{z \in P} \cdot\|\mu(P)-z\|^{2}
\end{aligned}
$$

## Magic formula

It holds for any $P \subset \mathbb{R}^{d}$ and any $z \in \mathbb{R}^{d}$ that

$$
\sum_{x \in P}\|x-z\|^{2}=\sum_{x \in P}\|x-\mu(P)\|^{2}+|P| \cdot\|\mu(P)-z\|^{2}
$$

and $\mu(P)=\sum_{x \in P} x /|P|$ is the optimal 1-means solution.

## Magic formula

It holds for any $P \subset \mathbb{R}^{d}$ and any $z \in \mathbb{R}^{d}$ that

$$
\sum_{x \in P}\|x-z\|^{2}=\sum_{x \in P}\|x-\mu(P)\|^{2}+|P| \cdot\|\mu(P)-z\|^{2}
$$

and $\mu(P)=\sum_{x \in P} x /|P|$ is the optimal 1-means solution.

## Corollary

The optimal $k$-means solution consists of centroids of subsets of $P$.

## Magic formula

It holds for any $P \subset \mathbb{R}^{d}$ and any $z \in \mathbb{R}^{d}$ that

$$
\sum_{x \in P}\|x-z\|^{2}=\sum_{x \in P}\|x-\mu(P)\|^{2}+|P| \cdot\|\mu(P)-z\|^{2}
$$

and $\mu(P)=\sum_{x \in P} x /|P|$ is the optimal 1-means solution.

## Corollary

The optimal $k$-means solution consists of centroids of subsets of $P$.

## Corollary

The optimal 1-means cost of any $P \subset \mathbb{R}^{d}$ is given by

$$
\sum_{x \in P}\|x-\mu(P)\|^{2}=\frac{1}{2|P|} \sum_{x \in P} \sum_{y \in P}\|x-y\|^{2} .
$$

Johnson, Lindenstrauss, 1984
Given $\varepsilon \in(0,1)$, there is an $r \in \mathcal{O}\left(\varepsilon^{-2} \log n\right)$ and a linear map $\pi: \mathbb{R}^{d} \rightarrow \mathbb{R}^{r}$ such that for all $x, y \in P$ :

$$
(1-\varepsilon)\|x-y\|^{2}<\|\pi(x)-\pi(y)\|^{2}<(1+\varepsilon)\|x-y\|^{2}
$$

Such a map can be found in randomized polynomial time.

Johnson, Lindenstrauss, 1984
Given $\varepsilon \in(0,1)$, there is an $r \in \mathcal{O}\left(\varepsilon^{-2} \log n\right)$ and a linear map $\pi: \mathbb{R}^{d} \rightarrow \mathbb{R}^{r}$ such that for all $x, y \in P$ :

$$
(1-\varepsilon)\|x-y\|^{2}<\|\pi(x)-\pi(y)\|^{2}<(1+\varepsilon)\|x-y\|^{2} .
$$

Such a map can be found in randomized polynomial time.

## Corollary

The optimal 1-means cost of any $P \subset \mathbb{R}^{d}$ is given by

$$
\sum_{x \in P}\|x-\mu(P)\|^{2}=\frac{1}{2|P|} \sum_{x \in P} \sum_{y \in P}\|x-y\|^{2} .
$$

Johnson, Lindenstrauss, 1984
Given $\varepsilon \in(0,1)$, there is an $r \in \mathcal{O}\left(\varepsilon^{-2} \log n\right)$ and a linear map $\pi: \mathbb{R}^{d} \rightarrow \mathbb{R}^{r}$ such that for all $x, y \in P$ :

$$
(1-\varepsilon)\|x-y\|^{2}<\|\pi(x)-\pi(y)\|^{2}<(1+\varepsilon)\|x-y\|^{2} .
$$

Such a map can be found in randomized polynomial time.

## Corollary

The optimal 1-means cost of any $P \subset \mathbb{R}^{d}$ is given by

$$
\sum_{x \in P}\|x-\mu(P)\|^{2}=\frac{1}{2|P|} \sum_{x \in P} \sum_{y \in P}\|x-y\|^{2} .
$$

Implies dimensionality reduction for $k$-means with $r \in \mathcal{O}\left(\varepsilon^{-2} \log n\right)$.

Johnson, Lindenstrauss, 1984
Given $\varepsilon \in(0,1)$, there is an $r \in \mathcal{O}\left(\varepsilon^{-2} \log n\right)$ and a linear map $\pi: \mathbb{R}^{d} \rightarrow \mathbb{R}^{r}$ such that for all $x, y \in P$ :

$$
(1-\varepsilon)\|x-y\|^{2}<\|\pi(x)-\pi(y)\|^{2}<(1+\varepsilon)\|x-y\|^{2} .
$$

Such a map can be found in randomized polynomial time.
Lower Bound for JL-type results: Larsen, Nelson, 2014
For any $d>1$ and $\varepsilon \in(0,1 / 2)$, there is a point set $X \subset \mathbb{R}^{d}$ such that

- $|X|=d^{O(1)}$
- if a linear $\pi: \mathbb{R}^{d} \rightarrow \mathbb{R}^{r}$ provides the JL guarantee for $X$, then $r \in \Omega\left(\min \left\{d, \varepsilon^{-2} \log n\right\}\right)$

Implies dimensionality reduction for $k$-means with $r \in \mathcal{O}\left(\varepsilon^{-2} \log n\right)$.

## Lower Bound of $\Omega\left(\varepsilon^{-2} \log n\right)$ for JL-type results

$\rightsquigarrow$ Is this a lower bound for the $k$-means problem, too?

## Lower Bound of $\Omega\left(\varepsilon^{-2} \log n\right)$ for JL-type results

$\rightsquigarrow$ Is this a lower bound for the $k$-means problem, too?

## No!

But dimensionality reduction must not preserve pairwise distances!

Lower Bound of $\Omega\left(\varepsilon^{-2} \log n\right)$ for JL-type results
$\rightsquigarrow$ Is this a lower bound for the $k$-means problem, too?

## No!

But dimensionality reduction must not preserve pairwise distances!
Recall: $k$-means cost function

$$
\operatorname{cost}(P, C)=\sum_{p \in P} \min _{c \in C}\|p-c\|^{2}
$$

## Dimensionality reduction

$P \subset \mathbb{R}^{d}$ is replaced by $Q \subset \mathbb{R}^{d}$ of smaller intrinsic dimension such that

$$
|\operatorname{cost}(Q, C)-\operatorname{cost}(P, C)| \leq \varepsilon \cdot \operatorname{cost}(P, C)
$$

holds for all sets $C \subset \mathbb{R}^{d}$ of $k$ centers.

## Idea

## Use the Singular Value Decomposition!

## Idea <br> Use the Singular Value Decomposition!

SVD-based results for $k$-means

- [Drineas, Frieze, Kannan, Vempala, Vinay, 1999]

2-approximation algorithm that projects to $k$ dimensions by SVD

- [McSherry, 2001], [Awashti, Sheffet, 2014] 4-guarantee with $k$ dimensions based on SVD


## Idea <br> Use the Singular Value Decomposition!

SVD-based results for $k$-means

- [Drineas, Frieze, Kannan, Vempala, Vinay, 1999]

2-approximation algorithm that projects to $k$ dimensions by SVD

- [McSherry, 2001], [Awashti, Sheffet, 2014] 4-guarantee with $k$ dimensions based on SVD

More precise idea
Project to more than $k$ dimensions based on SVD!

## Idea <br> Use the Singular Value Decomposition!

SVD-based results for $k$-means

- [Drineas, Frieze, Kannan, Vempala, Vinay, 1999]

2-approximation algorithm that projects to $k$ dimensions by SVD

- [McSherry, 2001], [Awashti, Sheffet, 2014]

4-guarantee with $k$ dimensions based on SVD

- [Boutsidis, Mahoney, Drineas, 2009] $(2+\varepsilon)$-guarantee with $\tilde{\Theta}\left(k / \varepsilon^{2}\right)$ dimensions (SVD+sampling)


## More precise idea

Project to more than $k$ dimensions based on SVD!

## Utilizing the Singular Value Decomposition (SVD)

- singular vectors $v_{1}, \ldots, v_{d}$, form a basis
- ordered according to singular values $\sigma_{1} \geq \ldots \geq \sigma_{r} \geq 0$



## Utilizing the Singular Value Decomposition (SVD)

- singular vectors $v_{1}, \ldots, v_{d}$, form a basis
- ordered according to singular values $\sigma_{1} \geq \ldots \geq \sigma_{r} \geq 0$



## Utilizing the Singular Value Decomposition (SVD)

- singular vectors $v_{1}, \ldots, v_{d}$, form a basis
- ordered according to singular values $\sigma_{1} \geq \ldots \geq \sigma_{r} \geq 0$



## Utilizing the Singular Value Decomposition (SVD)

- singular vectors $v_{1}, \ldots, v_{d}$, form a basis
- ordered according to singular values $\sigma_{1} \geq \ldots \geq \sigma_{r} \geq 0$

$$
\begin{gathered}
v_{2} \\
\sigma_{i}^{2}=\sum_{x \in P}\left(x^{t} v_{i}\right)^{2} \\
\sum_{i=1}^{r} \sigma_{i}^{2}=\sum_{x \in P}\|x\|^{2}
\end{gathered}
$$



## Utilizing the Singular Value Decomposition (SVD)

- singular vectors $v_{1}, \ldots, v_{d}$, form a basis
- ordered according to singular values $\sigma_{1} \geq \ldots \geq \sigma_{r} \geq 0$

$$
\begin{gathered}
v_{2} \\
\sigma_{i}^{2}=\sum_{x \in P}\left(x^{t} v_{i}\right)^{2} \\
\sum_{i=1}^{r} \sigma_{i}^{2}=\sum_{x \in P}\|x\|^{2}
\end{gathered}
$$



## SVD-based projections

$\rightsquigarrow$ Project to the span of the first $m$ singular vectors, $V_{m}$.

## Deal with an easier problem first

$\rightsquigarrow$ Subspace Approximation

## Deal with an easier problem first

$\rightsquigarrow$ Subspace Approximation

## The Subspace Approximation Problem

Given $P \subset \mathbb{R}^{d}$, find a $k$-dimensional subspace $V$ that minimizes

$$
\sum_{x \in P}\left\|x-\pi_{v}(x)\right\|^{2}
$$

where $\pi_{V}(x)$ is the perpendicular projection of $x$ to $V$.

## Deal with an easier problem first

$\rightsquigarrow$ Subspace Approximation

## The Subspace Approximation Problem

Given $P \subset \mathbb{R}^{d}$, find a $k$-dimensional subspace $V$ that minimizes

$$
\sum_{x \in P}\left\|x-\pi_{v}(x)\right\|^{2}
$$

where $\pi_{V}(x)$ is the perpendicular projection of $x$ to $V$.


## This talk is not about optimizing cost functions!

## This talk is not about optimizing cost functions!

If we wanted to solve the subspace approximation problem... The span of the first $k$ singular vectors $V_{k}$ is the optimal solution!

This talk is not about optimizing cost functions!
If we wanted to solve the subspace approximation problem... The span of the first $k$ singular vectors $V_{k}$ is the optimal solution!

## Dimensionality reduction for subspace approximation

$P \subset \mathbb{R}^{d}$ is replaced by $Q \subset \mathbb{R}^{d}$ of smaller intrinsic dimension such that

$$
\left|\sum_{y \in Q}\left\|y-\pi_{V}(y)\right\|^{2} \quad-\sum_{x \in P}\left\|x-\pi_{V}(x)\right\|^{2}\right| \leq \varepsilon \sum_{x \in P}\left\|x-\pi_{V}(x)\right\|^{2}
$$

holds for all $k$-dimensional subspaces $V$.

This talk is not about optimizing cost functions!
If we wanted to solve the subspace approximation problem... The span of the first $k$ singular vectors $V_{k}$ is the optimal solution!

## Dimensionality reduction for subspace approximation

$P \subset \mathbb{R}^{d}$ is replaced by $Q \subset \mathbb{R}^{d}$ of smaller intrinsic dimension such that

$$
\left|\sum_{y \in Q}\left\|y-\pi_{V}(y)\right\|^{2}+\Delta-\sum_{x \in P}\left\|x-\pi_{V}(x)\right\|^{2}\right| \leq \varepsilon \sum_{x \in P}\left\|x-\pi_{V}(x)\right\|^{2}
$$

holds for all $k$-dimensional subspaces $V$.

This talk is not about optimizing cost functions!
If we wanted to solve the subspace approximation problem... The span of the first $k$ singular vectors $V_{k}$ is the optimal solution!

## Dimensionality reduction for subspace approximation

$P \subset \mathbb{R}^{d}$ is replaced by $Q \subset \mathbb{R}^{d}$ of smaller intrinsic dimension such that

$$
\left|\sum_{y \in Q}\left\|y-\pi_{V}(y)\right\|^{2}+\Delta-\sum_{x \in P}\left\|x-\pi_{V}(x)\right\|^{2}\right| \leq \varepsilon \sum_{x \in P}\left\|x-\pi_{V}(x)\right\|^{2}
$$

holds for all $k$-dimensional subspaces $V$.
$\rightsquigarrow$ want to provide an oracle that can answer subpace queries

## What is the squared distance between a subspace and a point?



## What is the squared distance between a subspace and a point?



## What is the squared distance between a subspace and a point?



## What is the squared distance between a subspace and a point?



$$
\left\|x-\pi_{V}(x)\right\|^{2}=\|x\|^{2}-\left\|\pi_{V}(x)\right\|^{2}
$$

## What is the squared distance between a subspace and a point?

$$
\left\|x-\pi_{V}(x)\right\|^{2}=\|x\|^{2}-\left\|\pi_{V}(x)\right\|^{2}
$$

- gets closer to $\|x\|^{2}$ if $k$ is small compared to $d$
- subspace 'chooses' $k$ directions where the length is disregarded


## What is the squared distance between a subspace and a point?



$$
\left\|x-\pi_{V}(x)\right\|^{2}=\|x\|^{2}-\left\|\pi_{V}(x)\right\|^{2}
$$

- gets closer to $\|x\|^{2}$ if $k$ is small compared to $d$
- subspace 'chooses' $k$ directions where the length is disregarded
- First idea: Just say $\sum_{x \in P}\|x\|^{2}$ !


## What is the squared distance between a subspace and a point?



$$
\left\|x-\pi_{V}(x)\right\|^{2}=\|x\|^{2}-\left\|\pi_{V}(x)\right\|^{2}
$$

- gets closer to $\|x\|^{2}$ if $k$ is small compared to $d$
- subspace 'chooses' $k$ directions where the length is disregarded
- First idea: Just say $\sum_{x \in P}\|x\|^{2}$ !
- Problem: $P$ lies within $k$ dimensions $\rightarrow$ true answer can be 0


## What is the squared distance between a subspace and a point?

$$
\left\|x-\pi_{V}(x)\right\|^{2}=\|x\|^{2}-\left\|\pi_{V}(x)\right\|^{2}
$$

- gets closer to $\|x\|^{2}$ if $k$ is small compared to $d$
- subspace 'chooses' $k$ directions where the length is disregarded
- First idea: Just say $\sum_{x \in P}\|x\|^{2}$ !
- Problem: $P$ lies within $k$ dimensions $\rightarrow$ true answer can be 0
- Second idea: Store most important dimensions and lost length!
- $\rightsquigarrow$ Project points to $V_{m}$ for some nice $m$, set $\Delta:=\sum_{i=m+1}^{r} \sigma_{i}^{2}$.




The Singular Value Decomposition (SVD)

$$
\begin{aligned}
& \text { 明 } \\
& \sigma^{\sigma_{i}^{2}=\sum_{x=1}\left(\alpha^{4}\right)^{2}}
\end{aligned}
$$

## The Singular Value Decomposition (SVD)

$$
\begin{aligned}
& \text { 明 } \\
& \sigma_{i}^{2}=\sum_{x \in P}\left(x^{t} v_{i}\right)^{2} \\
& \sum_{i=1}^{p_{i}^{2}=\sum_{x=1}^{2}| || |^{2}}
\end{aligned}
$$



- distance to subspace gets closer to $\|x\|^{2}$ if $k$ is small compared to $d$
- subspace 'chooses' $k$ directions where the length is disregarded


## The Singular Value Decomposition (SVD)

$$
\begin{aligned}
& \sigma_{i}^{2}=\sum_{x \in P}\left(x^{t} v_{i}\right)^{2} \\
& \sum_{i=1}^{p_{i}^{2}=\sum_{x=1}^{2}| | x| |^{2}}
\end{aligned}
$$



- distance to subspace gets closer to $\|x\|^{2}$ if $k$ is small compared to $d$
- subspace 'chooses' $k$ directions where the length is disregarded

Assumption for this talk
Query subspace is spanned by singular vectors

## Dimensionality reduction

Project $P$ to $V_{m}$, store $\sum_{i=m+1}^{r} \sigma_{i}^{2}!$
Task: Report distance to a given query subspace

- Query subspace ‘disregards’ length in $k$ directions
- we want to report $\sum\|x\|^{2}$ - disregarded length


## Dimensionality reduction

Project $P$ to $V_{m}$, store $\sum_{i=m+1}^{r} \sigma_{i}^{2!}$
Task: Report distance to a given query subspace

- Query subspace 'disregards' length in $k$ directions
- we want to report $\sum\|x\|^{2}$ - disregarded length
$\sigma_{1}^{2} \quad \sigma_{2}^{2} \quad \sigma_{3}^{2} \ldots \sigma_{k}^{2} \quad \sigma_{k+1}^{2} \ldots \sigma_{2 k}^{2} \ldots \sigma_{m}^{2} \quad \sigma_{m+1}^{2} \ldots \sigma_{m+k}^{2} \ldots \sigma_{r-1}^{2} \quad \sigma_{r}^{2}$
- we report $\sum_{i=m+1}^{d} \sigma_{i}^{2}$ plus correct contribution of first $m$
- Error: Dimensions we report but are disregarded


## Dimensionality reduction

Project $P$ to $V_{m}$, store $\sum_{i=m+1}^{r} \sigma_{i}^{2!}$
Task: Report distance to a given query subspace

- Query subspace 'disregards' length in $k$ directions
- we want to report $\sum\|x\|^{2}$ - disregarded length

$$
\begin{array}{llllll}
\sigma_{1}^{2} & \sigma_{2}^{2} & \sigma_{3}^{2} \ldots \sigma_{k}^{2} & \sigma_{k+1}^{2} \ldots \sigma_{2 k}^{2} \ldots \sigma_{m}^{2} & \sigma_{m+1}^{2} \ldots \sigma_{m+k}^{2} \ldots \sigma_{r-1}^{2} & \sigma_{r}^{2}
\end{array}
$$

- we report $\sum_{i=m+1}^{d} \sigma_{i}^{2}$ plus correct contribution of first $m$
- Error: Dimensions we report but are disregarded


## Dimensionality reduction

Project $P$ to $V_{m}$, store $\sum_{i=m+1}^{r} \sigma_{i}^{2!}$
Task: Report distance to a given query subspace

- Query subspace 'disregards' length in $k$ directions
- we want to report $\sum\|x\|^{2}$ - disregarded length

$$
\begin{array}{lllllll}
\sigma_{1}^{2} & \sigma_{2}^{2} & \sigma_{3}^{2} \ldots \sigma_{k}^{2} & \sigma_{k+1}^{2} \ldots \sigma_{2 k}^{2} \ldots \sigma_{m}^{2} & \sigma_{m+1}^{2} \ldots \sigma_{m+k}^{2} \ldots \sigma_{r-1}^{2} & \sigma_{r}^{2}
\end{array}
$$

- we report $\sum_{i=m+1}^{d} \sigma_{i}^{2}$ plus correct contribution of first $m$
- Error: Dimensions we report but are disregarded


## Dimensionality reduction

Project $P$ to $V_{m}$, store $\sum_{i=m+1}^{r} \sigma_{i}^{2!}$
Task: Report distance to a given query subspace

- Query subspace ‘disregards’ length in $k$ directions
- we want to report $\sum\|x\|^{2}$ - disregarded length

$$
\sigma_{1}^{2} \quad \sigma_{2}^{2} \quad \sigma_{3}^{2} \ldots \sigma_{k}^{2} \quad \sigma_{k+1}^{2} \ldots \sigma_{2 k}^{2} \ldots \sigma_{m}^{2} \quad \sigma_{m+1}^{2} \ldots \sigma_{m+k}^{2} \ldots \sigma_{r-1}^{2} \quad \sigma_{r}^{2}
$$

- we report $\sum_{i=m+1}^{d} \sigma_{i}^{2}$ plus correct contribution of first $m$
- Error: Dimensions we report but are disregarded $\leq \sum_{i=m+1}^{m+k} \sigma_{i}^{2}$


## Dimensionality reduction

Project $P$ to $V_{m}$, store $\sum_{i=m+1}^{r} \sigma_{i}^{2}!$
Task: Report distance to a given query subspace

- Query subspace 'disregards' length in $k$ directions
- we want to report $\sum\|x\|^{2}$ - disregarded length

$$
\begin{array}{llllll}
\sigma_{1}^{2} & \sigma_{2}^{2} & \sigma_{3}^{2} \ldots \sigma_{k}^{2} & \sigma_{k+1}^{2} \ldots \sigma_{2 k}^{2} \ldots \sigma_{m}^{2} & \sigma_{m+1}^{2} \ldots \sigma_{m+k}^{2} \ldots \sigma_{r-1}^{2} & \sigma_{r}^{2}
\end{array}
$$

- we report $\sum_{i=m+1}^{d} \sigma_{i}^{2}$ plus correct contribution of first $m$
- Error: Dimensions we report but are disregarded $\leq \sum_{i=m+1}^{m+k} \sigma_{i}^{2}$


## Core idea

Make $m$ large enough such that $\sigma_{m+1}^{2}+\ldots+\sigma_{m+k}^{2}$ is small compared to $\sigma_{k+1}^{2}+\sigma_{2}^{2} \ldots+\ldots+\sigma_{r}^{2}!\quad \rightarrow m \geq\lceil k / \varepsilon\rceil$

## Theorem

For any $P \in \mathbb{R}^{d}, k, \varepsilon \in(0,1), n, d \geq k+\lceil k / \varepsilon\rceil$, there exists a $Q$ with intrinsic dimension $\lceil k / \varepsilon\rceil$ and a constant $\Delta$ such that

$$
\left|\sum_{x \in Q}\left\|y-\pi_{V}(y)\right\|^{2}+\Delta-\sum_{x \in P}\left\|x-\pi_{V}(x)\right\|^{2}\right| \leq \varepsilon \sum_{x \in P}\left\|x-\pi_{V}(x)\right\|^{2}
$$ holds for all $k$-dimensional subspaces $V$.

## Theorem

For any $P \in \mathbb{R}^{d}, k, \varepsilon \in(0,1), n, d \geq k+\lceil k / \varepsilon\rceil$, there exists a $Q$ with intrinsic dimension $\lceil k / \varepsilon\rceil$ and a constant $\Delta$ such that

$$
\left|\sum_{x \in Q}\left\|y-\pi_{V}(y)\right\|^{2}+\Delta-\sum_{x \in P}\left\|x-\pi_{V}(x)\right\|^{2}\right| \leq \varepsilon \sum_{x \in P}\left\|x-\pi_{V}(x)\right\|^{2}
$$

holds for all $k$-dimensional subspaces $V$.

- $Q$ is the projection of $P$ to $V_{m}$ with $m=\lceil k / \varepsilon\rceil$


## Theorem

For any $P \in \mathbb{R}^{d}, k, \varepsilon \in(0,1), n, d \geq k+\lceil k / \varepsilon\rceil$, there exists a $Q$ with intrinsic dimension $\lceil k / \varepsilon\rceil$ and a constant $\Delta$ such that

$$
\left|\sum_{x \in Q}\left\|y-\pi_{V}(y)\right\|^{2}+\Delta-\sum_{x \in P}\left\|x-\pi_{V}(x)\right\|^{2}\right| \leq \varepsilon \sum_{x \in P}\left\|x-\pi_{V}(x)\right\|^{2}
$$

holds for all $k$-dimensional subspaces $V$.

- $Q$ is the projection of $P$ to $V_{m}$ with $m=\lceil k / \varepsilon\rceil \quad A_{m}$


## Theorem

For any $P \in \mathbb{R}^{d}, k, \varepsilon \in(0,1), n, d \geq k+\lceil k / \varepsilon\rceil$, there exists a $Q$ with intrinsic dimension $\lceil k / \varepsilon\rceil$ and a constant $\Delta$ such that

$$
\left|\sum_{x \in Q}\left\|y-\pi_{v}(y)\right\|^{2}+\Delta-\sum_{x \in P}\left\|x-\pi_{v}(x)\right\|^{2}\right| \leq \varepsilon \sum_{x \in P}\left\|x-\pi_{v}(x)\right\|^{2}
$$

holds for all $k$-dimensional subspaces $V$.

- $Q$ is the projection of $P$ to $V_{m}$ with $m=\lceil k / \varepsilon\rceil \quad A_{m}$
- $\Delta$ is the lost squared length $\sum_{i=m+1}^{r} \sigma_{i}^{2}$


## Theorem

For any $P \in \mathbb{R}^{d}, k, \varepsilon \in(0,1), n, d \geq k+\lceil k / \varepsilon\rceil$, there exists a $Q$ with intrinsic dimension $\lceil k / \varepsilon\rceil$ and a constant $\Delta$ such that

$$
\left|\sum_{x \in Q}\left\|y-\pi_{v}(y)\right\|^{2}+\Delta-\sum_{x \in P}\left\|x-\pi_{v}(x)\right\|^{2}\right| \leq \varepsilon \sum_{x \in P}\left\|x-\pi_{v}(x)\right\|^{2}
$$

holds for all $k$-dimensional subspaces $V$.

- $Q$ is the projection of $P$ to $V_{m}$ with $m=\lceil k / \varepsilon\rceil \quad A_{m}$
- $\Delta$ is the lost squared length $\sum_{i=m+1}^{r} \sigma_{i}^{2}$
- maximum error is $\sum_{i=m+1}^{m+k} \sigma_{i}^{r} \leq \varepsilon \sum_{i=k+1}^{r} \sigma_{i}^{r}$


## How does this help for $k$-means?

## Our idea: Split $k$-means cost into two terms



## Our idea: Split $k$-means cost into two terms



For any $k$-dimensional subspace, approximate squared distances to and within the subspace!

## Our idea: Split $k$-means cost into two terms



For any $k$-dimensional subspace, approximate squared distances to and within the subspace!

Cohen, Elder, Musco, Musco, Persu, 2015:
This is unnecessary, we are already done!

## Better Plan

Cohen, Elder, Musco, Musco, Persu, 2015:
This is unnecessary, we are already done!

## Better Plan <br> Let $P \subseteq \mathbb{R}^{d}$, let $C$ be $k$ centers

Cohen, Elder, Musco, Musco, Persu, 2015:
This is unnecessary, we are already done!

## Better Plan

Let $P \subseteq \mathbb{R}^{d}$, let $C$ be $k$ centers

- Store the points as rows of a matrix $A \in \mathbb{R}^{n \times d}$

Cohen, Elder, Musco, Musco, Persu, 2015:
This is unnecessary, we are already done!

## Better Plan

Let $P \subseteq \mathbb{R}^{d}$, let $C$ be $k$ centers

- Store the points as rows of a matrix $A \in \mathbb{R}^{n \times d}$
- Define $\left(X_{C}\right)_{i j}= \begin{cases}1 / \sqrt{\left|C_{j}\right|} & \text { if } x_{i} \in C_{j} \\ 0 & \text { else }\end{cases}$

Cohen, Elder, Musco, Musco, Persu, 2015:
This is unnecessary, we are already done!

## Better Plan

Let $P \subseteq \mathbb{R}^{d}$, let $C$ be $k$ centers

- Store the points as rows of a matrix $A \in \mathbb{R}^{n \times d}$
- Define $\left(X_{C}\right)_{i j}= \begin{cases}1 / \sqrt{\left|C_{j}\right|} & \text { if } x_{i} \in C_{j} \\ 0 & \text { else }\end{cases}$
- $X_{C} X_{C}^{\top} A=\left(\begin{array}{c}\left.\begin{array}{c}\dddot{C} \\ \left.\mu\left(x_{j}\right)\right) \\ \ldots\end{array}\right)\end{array}\right.$

Cohen, Elder, Musco, Musco, Persu, 2015:
This is unnecessary, we are already done!

## Better Plan

Let $P \subseteq \mathbb{R}^{d}$, let $C$ be $k$ centers

- Store the points as rows of a matrix $A \in \mathbb{R}^{n \times d}$
- Define $\left(X_{C}\right)_{i j}= \begin{cases}1 / \sqrt{\left|C_{j}\right|} & \text { if } x_{i} \in C_{j} \\ 0 & \text { else }\end{cases}$
- $X_{C} X_{C}^{T} A=\left(\begin{array}{c}\cdots \\ \mu\left(C\left(x_{j}\right)\right) \\ \cdots\end{array}\right)$
- $\rightsquigarrow \sum_{j=1}^{n}\left\|x_{j}-\mu\left(C\left(x_{j}\right)\right)\right\|^{2}=\left\|A-X_{C} X_{C}^{T} A\right\|_{F}^{2}$

Cohen, Elder, Musco, Musco, Persu, 2015:
This is unnecessary, we are already done!

## Better Plan

Let $P \subseteq \mathbb{R}^{d}$, let $C$ be $k$ centers

- Store the points as rows of a matrix $A \in \mathbb{R}^{n \times d}$
- Define $\left(X_{C}\right)_{i j}=\left\{\begin{array}{ll}1 / \sqrt{\left|C_{j}\right|} & \text { if } x_{i} \in C_{j} \\ 0 & \text { else }\end{array} \rightsquigarrow(n \times k)\right.$-matrix
- $X_{C} X_{C}^{T} A=\left(\begin{array}{c}\cdots \\ \mu\left(C\left(x_{j}\right)\right) \\ \cdots\end{array}\right)$
- $\rightsquigarrow \sum_{j=1}^{n}\left\|x_{j}-\mu\left(C\left(x_{j}\right)\right)\right\|^{2}=\left\|A-X_{C} X_{C}^{T} A\right\|_{F}^{2}$
- $X_{C} X_{C}^{T}$ is a projection matrix and has rank $k$ !

Cohen, Elder, Musco, Musco, Persu, 2015:
This is unnecessary, we are already done!

## Better Plan

Let $P \subseteq \mathbb{R}^{d}$, let $C$ be $k$ centers

- Store the points as rows of a matrix $A \in \mathbb{R}^{n \times d}$
- Define $\left(X_{C}\right)_{i j}= \begin{cases}1 / \sqrt{\left|C_{j}\right|} & \text { if } x_{i} \in C_{j} \\ 0 & \text { else }\end{cases}$
- $X_{C} X_{C}^{\top} A=\left(\begin{array}{c}\cdots \\ \mu\left(C\left(x_{j}\right)\right) \\ \cdots\end{array}\right)$
- $\rightsquigarrow \sum_{j=1}^{n}\left\|x_{j}-\mu\left(C\left(x_{j}\right)\right)\right\|^{2}=\left\|A-X_{C} X_{C}^{\top} A\right\|_{F}^{2}$
- $X_{C} X_{C}^{T}$ is a projection matrix and has rank $k$ !
- Theorem already works for $X_{C}$, result for $k$-means immediate

Cohen, Elder, Musco, Musco, Persu, 2015:
This is unnecessary, we are already done!

## Boutsidis, Mahoney, Drineas, 2009

The $k$-means problem is equivalent to a constraint subspace approximation problem

## Boutsidis, Mahoney, Drineas, 2009

The $k$-means problem is equivalent to a constraint subspace approximation problem in $\mathbb{R}^{n}$ !

## Boutsidis, Mahoney, Drineas, 2009

The $k$-means problem is equivalent to a constraint subspace approximation problem in $\mathbb{R}^{n}$ !

Fits the columns of $A$ to a $k$-dimensional subspace.

## Boutsidis, Mahoney, Drineas, 2009

The $k$-means problem is equivalent to a constraint subspace approximation problem in $\mathbb{R}^{n}$ !

Fits the columns of $A$ to a $k$-dimensional subspace.

- Apply dimensionality reduction for subspace approximation
- Result is a $(n \times d)$-matrix of rank $m$


## Boutsidis, Mahoney, Drineas, 2009

The $k$-means problem is equivalent to a constraint subspace approximation problem in $\mathbb{R}^{n}$ !

Fits the columns of $A$ to a $k$-dimensional subspace.

- Apply dimensionality reduction for subspace approximation
- Result is a $(n \times d)$-matrix of rank $m$


## Dimensionality reduction for $k$-means to $\lceil k / \varepsilon\rceil$ dimensions!

## Lower Bound, Cohen, Elder, Musco, Musco, Persu, 2015

For any $\varepsilon>0$ there exist $n, d, k$ and a point set $P \subseteq \mathbb{R}^{d}$ such that

- projecting to $V_{m}$ with $m:=\lceil k / \varepsilon\rceil-1$
- and computing optimal centers on $V_{m}$
- does not give a $(1+\varepsilon)$-approximation


## Lower Bound, Cohen, Elder, Musco, Musco, Persu, 2015

For any $\varepsilon>0$ there exist $n, d, k$ and a point set $P \subseteq \mathbb{R}^{d}$ such that

- projecting to $V_{m}$ with $m:=\lceil k / \varepsilon\rceil-1$
- and computing optimal centers on $V_{m}$
- does not give a $(1+\varepsilon)$-approximation


## Construction

- points with $\lceil k / \varepsilon\rceil+k-1$ dimensions
- place simplex in $k-1$ dimensions
- place a Gaussian cloud in remaining $\lceil k / \varepsilon\rceil$ dimensions

Optimal solution: One center for Gaussian cloud, $k-1$ for simplex

## Lower Bound, Cohen, Elder, Musco, Musco, Persu, 2015

For any $\varepsilon>0$ there exist $n, d, k$ and a point set $P \subseteq \mathbb{R}^{d}$ such that

- projecting to $V_{m}$ with $m:=\lceil k / \varepsilon\rceil-1$
- and computing optimal centers on $V_{m}$
- does not give a $(1+\varepsilon)$-approximation


## Construction

- points with $\lceil k / \varepsilon\rceil+k-1$ dimensions
- place simplex in $k-1$ dimensions
- place a Gaussian cloud in remaining $\lceil k / \varepsilon\rceil$ dimensions

Optimal solution: One center for Gaussian cloud, $k-1$ for simplex
Parameters are adjusted such that whp

- largest $\lceil k / \varepsilon\rceil$ singular vectors lie in the cloud
- $\rightsquigarrow$ simplex collapses to origin $\rightsquigarrow$ too high clustering cost


## Lower Bound, Cohen, Elder, Musco, Musco, Persu, 2015

For any $\varepsilon>0$ there exist $n, d, k$ and a point set $P \subseteq \mathbb{R}^{d}$ such that

- projecting to $V_{m}$ with $m:=\lceil k / \varepsilon\rceil-1$
- and computing optimal centers on $V_{m}$
- does not give a $(1+\varepsilon)$-approximation


## Construction

- points with $\lceil k / \varepsilon\rceil+k-1$ dimensions
- place simplex in $k-1$ dimensions
- place a Gaussian cloud in remaining $\lceil k / \varepsilon\rceil$ dimensions

Optimal solution: One center for Gaussian cloud, $k-1$ for simplex

Thank you for your attention!

