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Introduction The k -means problem

The k -means problem

Given a point set P ⊆ Rd ,
compute a set C ⊆ Rd

with |C| = k centers
which minimizes cost(P,C)

=
∑

p∈P

min
c∈C
||p − c||2,

the sum of the squared
distances.

induces a partitioning of the
input point set
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Introduction The k -means problem

k -means is studied since the 50s
defined around 1950
Lloyd’s algorithm in 1957

, 2500 new citations since 2011

various algorithms for the k -means problem

k -means is still widely studied, new theoretical insights

Analysis of Lloyd’s algorithm (running time) in [AV06,V11]
constant approximation algorithms [JV01],[KM+04]
PTAS for constant k [M00,dlV+03]

, now O(nd + 2poly(1/ε,k)) [FL11]

k -means++ [AV07]

Hardness of k -means

k -means is NP-hard for k = 2 [ADHP09]

, also for d = 2 [MNV09]

it is NP-hard to c-approximate for a small c > 1 [ACKS15]
(c ≥ 1.001418 )
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Introduction The k -means problem

High dimensional data
Assume that d is much larger than k
Do we need to solve a d-dimensional problem?

Some answers
[JL84] O(ε−2 log n) dimensions suffice for a (1 + ε)-approximation
[DF+99] k dimensions suffice for a 2-approximation

How many dimensions do we need to approximately solve k -means?

Dimensionality reductions for k -means 19.05.2015 3 / 23



Introduction The k -means problem

High dimensional data
Assume that d is much larger than k
Do we need to solve a d-dimensional problem?

Some answers
[JL84] O(ε−2 log n) dimensions suffice for a (1 + ε)-approximation
[DF+99] k dimensions suffice for a 2-approximation

How many dimensions do we need to approximately solve k -means?

Dimensionality reductions for k -means 19.05.2015 3 / 23



Introduction The k -means problem

High dimensional data
Assume that d is much larger than k
Do we need to solve a d-dimensional problem?

Some answers
[JL84] O(ε−2 log n) dimensions suffice for a (1 + ε)-approximation
[DF+99] k dimensions suffice for a 2-approximation

How many dimensions do we need to approximately solve k -means?

Dimensionality reductions for k -means 19.05.2015 3 / 23



Introduction The k -means problem

Dimensionality reduction
Replace P by a point set Q of smaller intrinsic dimension

π : Rd → Rm

Dimensionality reduction

P ⊂ Rd is replaced by Q ⊂ Rd of smaller intrinsic dimension such that

|cost(Q,C)− cost(P,C)| ≤ ε · cost(P,C)

holds for all sets C ⊂ Rd of k centers.
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Introduction The k -means problem

In the following

Facts on k -means and JL result
Joint work with Dan Feldman and Christian Sohler
STOC ’15 paper due to Cohen et. al.

Dimensionality reductions for k -means 19.05.2015 5 / 23



Introduction The k -means problem

In the following
Facts on k -means and JL result

Joint work with Dan Feldman and Christian Sohler
STOC ’15 paper due to Cohen et. al.

Dimensionality reductions for k -means 19.05.2015 5 / 23



Introduction The k -means problem

In the following
Facts on k -means and JL result
Joint work with Dan Feldman and Christian Sohler

STOC ’15 paper due to Cohen et. al.

Dimensionality reductions for k -means 19.05.2015 5 / 23



Introduction The k -means problem

In the following
Facts on k -means and JL result
Joint work with Dan Feldman and Christian Sohler
STOC ’15 paper due to Cohen et. al.

Dimensionality reductions for k -means 19.05.2015 5 / 23



Introduction The k -means problem

Fact 1 [Foklore?]

It holds for any P ⊂ Rd and any z ∈ Rd that
∑

x∈P

||x − z||2 =
∑

x∈P

||x − µ(P)||2 + |P| · ||µ(P)− z||2,

where µ(P) =
∑

x∈P x/|P| is the centroid of P.

= +

Implications
centroid is always the optimal 1-means solution
optimal solution consists of centroids of subsets
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Introduction The k -means problem

Magic formula

It holds for any P ⊂ Rd and any z ∈ Rd that
∑

x∈P

||x − z||2 =
∑

x∈P

||x − µ(P)||2 + |P| · ||µ(P)− z||2

and µ(P) =
∑

x∈P x/|P| is the optimal 1-means solution.

Corollary
The optimal k -means solution consists of centroids of subsets of P.

Corollary

The optimal 1-means cost of any P ⊂ Rd is given by
∑

x∈P

||x − µ(P)||2 =
1

2|P|
∑

x∈P

∑

y∈P

||x − y ||2.
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The optimal 1-means cost of any P ⊂ Rd is given by
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Dimensionality reductions for k -means The Johnson-Lindenstrauss Lemma

Johnson, Lindenstrauss, 1984
Given ε ∈ (0,1), there is an r ∈ O(ε−2 log n) and a linear map
π : Rd → Rr such that for all x , y ∈ P:

(1− ε)||x − y ||2 < ||π(x)− π(y)||2 < (1 + ε)||x − y ||2.

Such a map can be found in randomized polynomial time.

Implies dimensionality reduction for k -means with r ∈ O(ε−2 log n).
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Dimensionality reductions for k -means The Johnson-Lindenstrauss Lemma

Lower Bound of Ω(ε−2 log n) for JL-type results
 Is this a lower bound for the k -means problem, too?

No!
But dimensionality reduction must not preserve pairwise distances!

Recall: k -means cost function

cost(P,C) =
∑

p∈P

min
c∈C
||p − c||2

Dimensionality reduction

P ⊂ Rd is replaced by Q ⊂ Rd of smaller intrinsic dimension such that

|cost(Q,C)− cost(P,C)| ≤ ε · cost(P,C)

holds for all sets C ⊂ Rd of k centers.
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Dimensionality reductions for k -means The Singular Value Decomposition

Idea
Use the Singular Value Decomposition!

SVD-based results for k -means
[Drineas, Frieze, Kannan, Vempala, Vinay, 1999]
2-approximation algorithm that projects to k dimensions by SVD
[McSherry, 2001], [Awashti, Sheffet, 2014]
4-guarantee with k dimensions based on SVD

[Boutsidis, Mahoney, Drineas, 2009]
(2 + ε)-guarantee with Θ̃(k/ε2) dimensions (SVD+sampling)

More precise idea
Project to more than k dimensions based on SVD!
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Dimensionality reductions for k -means The Singular Value Decomposition

Utilizing the Singular Value Decomposition (SVD)
singular vectors v1, . . . , vd , form a basis
ordered according to singular values σ1 ≥ . . . ≥ σr ≥ 0

σ2/n

σ1/n

v1

v2

σ2/n

σ1/n

σ2
i =

∑

x∈P

(x tvi)
2

r∑

i=1

σ2
i =

∑

x∈P

||x ||2

SVD-based projections
 Project to the span of the first m singular vectors, Vm.
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The Subspace Approximation Problem Definition and Goal

Deal with an easier problem first
 Subspace Approximation

The Subspace Approximation Problem

Given P ⊂ Rd , find a k -dimensional subspace V that minimizes
∑

x∈P

||x − πV (x)||2

where πV (x) is the perpendicular projection of x to V .
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The Subspace Approximation Problem Definition and Goal

This talk is not about optimizing cost functions!

If we wanted to solve the subspace approximation problem. . .
The span of the first k singular vectors Vk is the optimal solution!

Dimensionality reduction for subspace approximation

P ⊂ Rd is replaced by Q ⊂ Rd of smaller intrinsic dimension such that
∣∣∣
∑

y∈Q

||y − πV (y)||2

+ ∆

−
∑

x∈P

||x − πV (x)||2
∣∣∣ ≤ ε

∑

x∈P

||x − πV (x)||2

holds for all k -dimensional subspaces V .

 want to provide an oracle that can answer subpace queries
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The Subspace Approximation Problem Dimensionality Reduction

What is the squared distance between a subspace and a point?

0
||x − πV (x)||2 = ||x ||2 − ||πV (x)||2

gets closer to ||x ||2 if k is small compared to d
subspace ‘chooses’ k directions where the length is disregarded

First idea: Just say
∑

x∈P ||x ||2!

Problem: P lies within k dimensions→ true answer can be 0

Second idea: Store most important dimensions and lost length!
 Project points to Vm for some nice m, set ∆ :=

∑r
i=m+1 σ

2
i .
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The Subspace Approximation Problem Dimensionality Reduction

The Singular Value Decomposition (SVD)
v1

v2

σ2

σ1

σ2
i =

∑

x∈P

(x tvi)
2

r∑

i=1

σ2
i =

∑

x∈P

||x ||2

distance to subspace gets closer to ||x ||2 if k is small compared to d
subspace ‘chooses’ k directions where the length is disregarded

Assumption for this talk
Query subspace is spanned by singular vectors
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The Subspace Approximation Problem Dimensionality Reduction

Dimensionality reduction

Project P to Vm, store
∑r

i=m+1 σ
2
i !

Task: Report distance to a given query subspace
Query subspace ‘disregards’ length in k directions
we want to report

∑ ||x ||2 − disregarded length

we report
∑d

i=m+1 σ
2
i plus correct contribution of first m

Error: Dimensions we report but are disregarded

≤∑m+k
i=m+1 σ

2
i

Core idea
Make m large enough such that σ2

m+1 + . . .+ σ2
m+k

is small compared to σ2
k+1 + σ2

2 . . .+ . . .+ σ2
r ! → m ≥ dk/εe
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1 σ2

2 σ2
3 . . . σ

2
k σ2

k+1 . . . σ
2
2k . . . σ

2
m σ2

m+1 . . . σ
2
m+k . . . σ

2
r−1 σ2

r

we report
∑d

i=m+1 σ
2
i plus correct contribution of first m

Error: Dimensions we report but are disregarded

≤∑m+k
i=m+1 σ

2
i

Core idea
Make m large enough such that σ2

m+1 + . . .+ σ2
m+k

is small compared to σ2
k+1 + σ2

2 . . .+ . . .+ σ2
r ! → m ≥ dk/εe
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The Subspace Approximation Problem Dimensionality Reduction

Theorem
For any P ∈ Rd , k , ε ∈ (0,1), n,d ≥ k + dk/εe, there exists
a Q with intrinsic dimension dk/εe and a constant ∆ such that
∣∣∣
∑

x∈Q

||y − πV (y)||2 + ∆−
∑

x∈P

||x − πV (x)||2
∣∣∣ ≤ ε

∑

x∈P

||x − πV (x)||2

holds for all k -dimensional subspaces V .

Q is the projection of P to Vm with m = dk/εe

Am

∆ is the lost squared length
∑r

i=m+1 σ
2
i

maximum error is
∑m+k

i=m+1 σ
r
i ≤ ε

∑r
i=k+1 σ

r
i
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Back to k -means Dimensionality Reduction

How does this help for k -means?
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Back to k -means Dimensionality Reduction

Our idea: Split k -means cost into two terms

= +

For any k -dimensional subspace,
approximate squared distances to and within the subspace!

Cohen, Elder, Musco, Musco, Persu, 2015:
This is unnecessary, we are already done!
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Back to k -means Dimensionality Reduction

Better Plan
Let P ⊆ Rd , let C be k centers

Store the points as rows of a matrix A ∈ Rn×d

Define (XC)ij =

{
1/
√
|Cj | if xi ∈ Cj

0 else
 (n × k)-matrix

XCX T
C A =




. . .
µ(C(xj))
. . .




 
∑n

j=1 ||xj − µ(C(xj))||2 = ||A− XCX T
C A||2F

XCX T
C is a projection matrix and has rank k !

Theorem already works for XC , result for k -means immediate

Cohen, Elder, Musco, Musco, Persu, 2015:
This is unnecessary, we are already done!

Dimensionality reductions for k -means 19.05.2015 21 / 23



Back to k -means Dimensionality Reduction

Better Plan
Let P ⊆ Rd , let C be k centers

Store the points as rows of a matrix A ∈ Rn×d

Define (XC)ij =

{
1/
√
|Cj | if xi ∈ Cj

0 else
 (n × k)-matrix

XCX T
C A =




. . .
µ(C(xj))
. . .




 
∑n

j=1 ||xj − µ(C(xj))||2 = ||A− XCX T
C A||2F

XCX T
C is a projection matrix and has rank k !

Theorem already works for XC , result for k -means immediate

Cohen, Elder, Musco, Musco, Persu, 2015:
This is unnecessary, we are already done!

Dimensionality reductions for k -means 19.05.2015 21 / 23



Back to k -means Dimensionality Reduction

Better Plan
Let P ⊆ Rd , let C be k centers

Store the points as rows of a matrix A ∈ Rn×d

Define (XC)ij =

{
1/
√
|Cj | if xi ∈ Cj

0 else
 (n × k)-matrix

XCX T
C A =




. . .
µ(C(xj))
. . .




 
∑n

j=1 ||xj − µ(C(xj))||2 = ||A− XCX T
C A||2F

XCX T
C is a projection matrix and has rank k !

Theorem already works for XC , result for k -means immediate

Cohen, Elder, Musco, Musco, Persu, 2015:
This is unnecessary, we are already done!

Dimensionality reductions for k -means 19.05.2015 21 / 23



Back to k -means Dimensionality Reduction

Better Plan
Let P ⊆ Rd , let C be k centers

Store the points as rows of a matrix A ∈ Rn×d

Define (XC)ij =

{
1/
√
|Cj | if xi ∈ Cj

0 else
 (n × k)-matrix

XCX T
C A =




. . .
µ(C(xj))
. . .




 
∑n

j=1 ||xj − µ(C(xj))||2 = ||A− XCX T
C A||2F

XCX T
C is a projection matrix and has rank k !

Theorem already works for XC , result for k -means immediate

Cohen, Elder, Musco, Musco, Persu, 2015:
This is unnecessary, we are already done!

Dimensionality reductions for k -means 19.05.2015 21 / 23



Back to k -means Dimensionality Reduction

Better Plan
Let P ⊆ Rd , let C be k centers

Store the points as rows of a matrix A ∈ Rn×d

Define (XC)ij =

{
1/
√
|Cj | if xi ∈ Cj

0 else
 (n × k)-matrix

XCX T
C A =




. . .
µ(C(xj))
. . .




 
∑n

j=1 ||xj − µ(C(xj))||2 = ||A− XCX T
C A||2F

XCX T
C is a projection matrix and has rank k !

Theorem already works for XC , result for k -means immediate

Cohen, Elder, Musco, Musco, Persu, 2015:
This is unnecessary, we are already done!

Dimensionality reductions for k -means 19.05.2015 21 / 23



Back to k -means Dimensionality Reduction

Better Plan
Let P ⊆ Rd , let C be k centers

Store the points as rows of a matrix A ∈ Rn×d

Define (XC)ij =

{
1/
√
|Cj | if xi ∈ Cj

0 else
 (n × k)-matrix

XCX T
C A =




. . .
µ(C(xj))
. . .




 
∑n

j=1 ||xj − µ(C(xj))||2 = ||A− XCX T
C A||2F

XCX T
C is a projection matrix and has rank k !

Theorem already works for XC , result for k -means immediate

Cohen, Elder, Musco, Musco, Persu, 2015:
This is unnecessary, we are already done!

Dimensionality reductions for k -means 19.05.2015 21 / 23



Back to k -means Dimensionality Reduction

Better Plan
Let P ⊆ Rd , let C be k centers

Store the points as rows of a matrix A ∈ Rn×d

Define (XC)ij =

{
1/
√
|Cj | if xi ∈ Cj

0 else
 (n × k)-matrix

XCX T
C A =




. . .
µ(C(xj))
. . .




 
∑n

j=1 ||xj − µ(C(xj))||2 = ||A− XCX T
C A||2F

XCX T
C is a projection matrix and has rank k !

Theorem already works for XC , result for k -means immediate

Cohen, Elder, Musco, Musco, Persu, 2015:
This is unnecessary, we are already done!

Dimensionality reductions for k -means 19.05.2015 21 / 23



Back to k -means Dimensionality Reduction

Boutsidis, Mahoney, Drineas, 2009
The k -means problem is equivalent to a

constraint subspace approximation problem

in Rn!

Fits the columns of A to a k -dimensional subspace.

Apply dimensionality reduction for subspace approximation
Result is a (n × d)-matrix of rank m

Dimensionality reduction for k -means to dk/εe dimensions!
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Back to k -means Lower Bound for SVD-based Dimensionality Reductions

Lower Bound, Cohen, Elder, Musco, Musco, Persu, 2015
For any ε > 0 there exist n,d , k and a point set P ⊆ Rd such that

projecting to Vm with m := dk/εe − 1
and computing optimal centers on Vm

does not give a (1 + ε)-approximation

Construction
points with dk/εe+ k − 1 dimensions
place simplex in k − 1 dimensions
place a Gaussian cloud in remaining dk/εe dimensions

Optimal solution: One center for Gaussian cloud, k − 1 for simplex
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Lower Bound, Cohen, Elder, Musco, Musco, Persu, 2015
For any ε > 0 there exist n,d , k and a point set P ⊆ Rd such that

projecting to Vm with m := dk/εe − 1
and computing optimal centers on Vm

does not give a (1 + ε)-approximation

Construction
points with dk/εe+ k − 1 dimensions
place simplex in k − 1 dimensions
place a Gaussian cloud in remaining dk/εe dimensions

Optimal solution: One center for Gaussian cloud, k − 1 for simplex

Parameters are adjusted such that whp
largest dk/εe singular vectors lie in the cloud
 simplex collapses to origin too high clustering cost
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Back to k -means Lower Bound for SVD-based Dimensionality Reductions

Lower Bound, Cohen, Elder, Musco, Musco, Persu, 2015
For any ε > 0 there exist n,d , k and a point set P ⊆ Rd such that

projecting to Vm with m := dk/εe − 1
and computing optimal centers on Vm

does not give a (1 + ε)-approximation

Construction
points with dk/εe+ k − 1 dimensions
place simplex in k − 1 dimensions
place a Gaussian cloud in remaining dk/εe dimensions

Optimal solution: One center for Gaussian cloud, k − 1 for simplex

Thank you for your attention!
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