Dimensionality reductions for *k*-means

Melanie Schmidt

19.05.2015

Dimensionality reductions

for k-means

19.05.2015 0 / 23

The <i>k</i> -means problem

• Given a point set $P \subseteq \mathbb{R}^d$,

- Given a point set $P \subseteq \mathbb{R}^d$,
- compute a set C ⊆ ℝ^d
 with |C| = k centers

- Given a point set $P \subseteq \mathbb{R}^d$,
- compute a set C ⊆ ℝ^d
 with |C| = k centers
- which minimizes cost(P, C)

$$= \sum_{\boldsymbol{p}\in\boldsymbol{P}}\min_{\boldsymbol{c}\in\boldsymbol{C}}||\boldsymbol{p}-\boldsymbol{c}||^2,$$

the sum of the squared distances.

- Given a point set $P \subseteq \mathbb{R}^d$,
- compute a set C ⊆ ℝ^d
 with |C| = k centers
- which minimizes cost(P, C)

$$=\sum_{\boldsymbol{p}\in\boldsymbol{P}}\min_{\boldsymbol{c}\in\boldsymbol{C}}||\boldsymbol{p}-\boldsymbol{c}||^2,$$

the sum of the squared distances.

 induces a partitioning of the input point set

- defined around 1950
- Lloyd's algorithm in 1957
- various algorithms for the k-means problem

- defined around 1950
- Lloyd's algorithm in 1957
- various algorithms for the k-means problem

- defined around 1950
- Lloyd's algorithm in 1957, 2500 new citations since 2011
- various algorithms for the k-means problem

- defined around 1950
- Lloyd's algorithm in 1957, 2500 new citations since 2011
- various algorithms for the k-means problem

k-means is still widely studied, new theoretical insights

Analysis of Lloyd's algorithm (running time) in [AV06,V11]

- defined around 1950
- Lloyd's algorithm in 1957, 2500 new citations since 2011
- various algorithms for the k-means problem

- Analysis of Lloyd's algorithm (running time) in [AV06,V11]
- constant approximation algorithms [JV01],[KM+04]

- defined around 1950
- Lloyd's algorithm in 1957, 2500 new citations since 2011
- various algorithms for the k-means problem

- Analysis of Lloyd's algorithm (running time) in [AV06,V11]
- constant approximation algorithms [JV01],[KM+04]
- PTAS for constant k [M00,dlV+03]

- defined around 1950
- Lloyd's algorithm in 1957, 2500 new citations since 2011
- various algorithms for the k-means problem

- Analysis of Lloyd's algorithm (running time) in [AV06,V11]
- constant approximation algorithms [JV01],[KM+04]
- PTAS for constant k [M00,dlV+03], now $\mathcal{O}(nd + 2^{\text{poly}(1/\varepsilon,k)})$ [FL11]

- defined around 1950
- Lloyd's algorithm in 1957, 2500 new citations since 2011
- various algorithms for the k-means problem

- Analysis of Lloyd's algorithm (running time) in [AV06,V11]
- constant approximation algorithms [JV01],[KM+04]
- PTAS for constant k [M00,dlV+03], now $\mathcal{O}(nd + 2^{\text{poly}(1/\varepsilon,k)})$ [FL11]
- k-means++ [AV07]

- defined around 1950
- Lloyd's algorithm in 1957, 2500 new citations since 2011
- various algorithms for the k-means problem

k-means is still widely studied, new theoretical insights

- Analysis of Lloyd's algorithm (running time) in [AV06,V11]
- constant approximation algorithms [JV01],[KM+04]
- PTAS for constant k [M00,dlV+03], now $\mathcal{O}(nd + 2^{\text{poly}(1/\varepsilon,k)})$ [FL11]
- *k*-means++ [AV07]

Hardness of k-means

- defined around 1950
- Lloyd's algorithm in 1957, 2500 new citations since 2011
- various algorithms for the k-means problem

k-means is still widely studied, new theoretical insights

- Analysis of Lloyd's algorithm (running time) in [AV06,V11]
- constant approximation algorithms [JV01],[KM+04]
- PTAS for constant k [M00,dlV+03], now $\mathcal{O}(nd + 2^{\text{poly}(1/\varepsilon,k)})$ [FL11]
- k-means++ [AV07]

Hardness of k-means

• *k*-means is NP-hard for k = 2 [ADHP09]

- defined around 1950
- Lloyd's algorithm in 1957, 2500 new citations since 2011
- various algorithms for the k-means problem

k-means is still widely studied, new theoretical insights

- Analysis of Lloyd's algorithm (running time) in [AV06,V11]
- constant approximation algorithms [JV01],[KM+04]
- PTAS for constant k [M00,dlV+03], now $\mathcal{O}(nd + 2^{\text{poly}(1/\varepsilon,k)})$ [FL11]
- k-means++ [AV07]

Hardness of k-means

• *k*-means is NP-hard for k = 2 [ADHP09], also for d = 2 [MNV09]

- defined around 1950
- Lloyd's algorithm in 1957, 2500 new citations since 2011
- various algorithms for the k-means problem

k-means is still widely studied, new theoretical insights

- Analysis of Lloyd's algorithm (running time) in [AV06,V11]
- constant approximation algorithms [JV01],[KM+04]
- PTAS for constant k [M00,dlV+03], now $\mathcal{O}(nd + 2^{\text{poly}(1/\varepsilon,k)})$ [FL11]
- *k*-means++ [AV07]

Hardness of k-means

- *k*-means is NP-hard for k = 2 [ADHP09], also for d = 2 [MNV09]
- it is NP-hard to *c*-approximate for a small *c* > 1 [ACKS15]

- defined around 1950
- Lloyd's algorithm in 1957, 2500 new citations since 2011
- various algorithms for the k-means problem

k-means is still widely studied, new theoretical insights

- Analysis of Lloyd's algorithm (running time) in [AV06,V11]
- constant approximation algorithms [JV01],[KM+04]
- PTAS for constant k [M00,dlV+03], now $\mathcal{O}(nd + 2^{\text{poly}(1/\varepsilon,k)})$ [FL11]
- k-means++ [AV07]

Hardness of k-means

- *k*-means is NP-hard for k = 2 [ADHP09], also for d = 2 [MNV09]
- it is NP-hard to *c*-approximate for a small *c* > 1 [ACKS15]
- (*c* ≥ 1.001418)

High dimensional data

- Assume that d is much larger than k
- Do we need to solve a *d*-dimensional problem?

High dimensional data

- Assume that d is much larger than k
- Do we need to solve a d-dimensional problem?

Some answers

- [JL84] $O(\varepsilon^{-2} \log n)$ dimensions suffice for a $(1 + \varepsilon)$ -approximation
- [DF+99] k dimensions suffice for a 2-approximation

High dimensional data

- Assume that d is much larger than k
- Do we need to solve a d-dimensional problem?

Some answers

- [JL84] $O(\varepsilon^{-2} \log n)$ dimensions suffice for a $(1 + \varepsilon)$ -approximation
- [DF+99] k dimensions suffice for a 2-approximation

How many dimensions do we need to approximately solve k-means?

Dimensionality reduction

Dimensionality reduction

Replace *P* by a point set *Q* of smaller intrinsic dimension

Dimensionality reduction

 $P \subset \mathbb{R}^d$ is replaced by $Q \subset \mathbb{R}^d$ of smaller intrinsic dimension such that

$$|\operatorname{cost}(Q, C) - \operatorname{cost}(P, C)| \le \varepsilon \cdot \operatorname{cost}(P, C)$$

holds for all sets $C \subset \mathbb{R}^d$ of *k* centers.

• Facts on k-means and JL result

- Facts on k-means and JL result
- Joint work with Dan Feldman and Christian Sohler

- Facts on k-means and JL result
- Joint work with Dan Feldman and Christian Sohler
- STOC '15 paper due to Cohen et. al.

Fact 1 [Foklore?]

It holds for any $P \subset \mathbb{R}^d$ and any $z \in \mathbb{R}^d$ that

$$\sum_{x \in P} ||x - z||^2 = \sum_{x \in P} ||x - \mu(P)||^2 + |P| \cdot ||\mu(P) - z||^2,$$

where $\mu(P) = \sum_{x \in P} x/|P|$ is the centroid of *P*.

Fact 1 [Foklore?]

It holds for any $P \subset \mathbb{R}^d$ and any $z \in \mathbb{R}^d$ that

$$\sum_{x \in P} ||x - z||^2 = \sum_{x \in P} ||x - \mu(P)||^2 + |P| \cdot ||\mu(P) - z||^2,$$

where $\mu(P) = \sum_{x \in P} x/|P|$ is the centroid of *P*.

Fact 1 [Foklore?]

It holds for any $P \subset \mathbb{R}^d$ and any $z \in \mathbb{R}^d$ that

$$\sum_{x \in P} ||x - z||^2 = \sum_{x \in P} ||x - \mu(P)||^2 + |P| \cdot ||\mu(P) - z||^2,$$

where $\mu(P) = \sum_{x \in P} x/|P|$ is the centroid of *P*.

Implications

- centroid is always the optimal 1-means solution
- optimal solution consists of centroids of subsets

Dimensionality reductions

for k-means

It holds for any $P \subset \mathbb{R}^d$ and any $z \in \mathbb{R}^d$ that

$$\sum_{x \in P} ||x - z||^2 = \sum_{x \in P} ||x - \mu(P)||^2 + |P| \cdot ||\mu(P) - z||^2$$

where $\mu(P) = \sum_{x \in P} x/|P|$ is the centroid of *P*.
It holds for any $P \subset \mathbb{R}^d$ and any $z \in \mathbb{R}^d$ that

$$\sum_{x \in P} ||x - z||^2 = \sum_{x \in P} ||x - \mu(P)||^2 + |P| \cdot ||\mu(P) - z||^2,$$

where $\mu(P) = \sum_{x \in P} x/|P|$ is the centroid of *P*.

Corollary (Fact 2)

$$\sum_{x \in P} ||x - \mu(P)||^2 = \frac{1}{2|P|} \sum_{x \in P} \sum_{y \in P} ||x - y||^2.$$

It holds for any $P \subset \mathbb{R}^d$ and any $z \in \mathbb{R}^d$ that

$$\sum_{x \in P} ||x - z||^2 = \sum_{x \in P} ||x - \mu(P)||^2 + |P| \cdot ||\mu(P) - z||^2,$$

where $\mu(P) = \sum_{x \in P} x/|P|$ is the centroid of *P*.

Corollary (Fact 2)

$$\sum_{x \in P} ||x - \mu(P)||^2 = \frac{1}{2|P|} \sum_{x \in P} \sum_{y \in P} ||x - y||^2.$$

$$\sum_{z \in P} \sum_{x \in P} ||x - z||^2$$

It holds for any $P \subset \mathbb{R}^d$ and any $z \in \mathbb{R}^d$ that

$$\sum_{x \in P} ||x - z||^2 = \sum_{x \in P} ||x - \mu(P)||^2 + |P| \cdot ||\mu(P) - z||^2,$$

where $\mu(P) = \sum_{x \in P} x/|P|$ is the centroid of *P*.

Corollary (Fact 2)

$$\sum_{x \in P} ||x - \mu(P)||^2 = \frac{1}{2|P|} \sum_{x \in P} \sum_{y \in P} ||x - y||^2.$$

$$\sum_{z \in P} \sum_{x \in P} ||x - z||^2 = \sum_{z \in P}$$

It holds for any $P \subset \mathbb{R}^d$ and any $z \in \mathbb{R}^d$ that

$$\sum_{x \in P} ||x - z||^2 = \sum_{x \in P} ||x - \mu(P)||^2 + |P| \cdot ||\mu(P) - z||^2,$$

where $\mu(P) = \sum_{x \in P} x/|P|$ is the centroid of *P*.

Corollary (Fact 2)

$$\sum_{x \in P} ||x - \mu(P)||^2 = \frac{1}{2|P|} \sum_{x \in P} \sum_{y \in P} ||x - y||^2.$$

$$\sum_{z \in P} \sum_{x \in P} ||x - z||^2 = \sum_{z \in P} \left(\sum_{x \in P} ||x - \mu(P)||^2 + |P| \cdot ||\mu(P) - z||^2 \right)$$

It holds for any $P \subset \mathbb{R}^d$ and any $z \in \mathbb{R}^d$ that

$$\sum_{x \in P} ||x - z||^2 = \sum_{x \in P} ||x - \mu(P)||^2 + |P| \cdot ||\mu(P) - z||^2,$$

where $\mu(P) = \sum_{x \in P} x/|P|$ is the centroid of *P*.

Corollary (Fact 2)

$$\sum_{x \in P} ||x - \mu(P)||^2 = \frac{1}{2|P|} \sum_{x \in P} \sum_{y \in P} ||x - y||^2.$$

$$\sum_{z \in P} \sum_{x \in P} ||x - z||^2 = \sum_{z \in P} \left(\sum_{x \in P} ||x - \mu(P)||^2 + |P| \cdot ||\mu(P) - z||^2 \right)$$

It holds for any $P \subset \mathbb{R}^d$ and any $z \in \mathbb{R}^d$ that

$$\sum_{x \in P} ||x - z||^2 = \sum_{x \in P} ||x - \mu(P)||^2 + |P| \cdot ||\mu(P) - z||^2,$$

where $\mu(P) = \sum_{x \in P} x/|P|$ is the centroid of *P*.

Corollary (Fact 2)

$$\sum_{x \in P} ||x - \mu(P)||^2 = \frac{1}{2|P|} \sum_{x \in P} \sum_{y \in P} ||x - y||^2.$$

$$\sum_{z \in P} \sum_{x \in P} ||x - z||^2 = \sum_{z \in P} \left(\sum_{x \in P} ||x - \mu(P)||^2 + |P| \cdot ||\mu(P) - z||^2 \right)$$
$$= |P| \sum_{x \in P} ||x - \mu(P)||^2 + |P| \sum_{z \in P} \cdot ||\mu(P) - z||^2$$

Magic formula

It holds for any $P \subset \mathbb{R}^d$ and any $z \in \mathbb{R}^d$ that

$$\sum_{x \in P} ||x - z||^2 = \sum_{x \in P} ||x - \mu(P)||^2 + |P| \cdot ||\mu(P) - z||^2$$

and $\mu(P) = \sum_{x \in P} x/|P|$ is the optimal 1-means solution.

Magic formula

It holds for any $P \subset \mathbb{R}^d$ and any $z \in \mathbb{R}^d$ that

$$\sum_{x \in P} ||x - z||^2 = \sum_{x \in P} ||x - \mu(P)||^2 + |P| \cdot ||\mu(P) - z||^2$$

and $\mu(P) = \sum_{x \in P} x/|P|$ is the optimal 1-means solution.

Corollary

The optimal k-means solution consists of centroids of subsets of P.

Magic formula

It holds for any $P \subset \mathbb{R}^d$ and any $z \in \mathbb{R}^d$ that

$$\sum_{x \in P} ||x - z||^2 = \sum_{x \in P} ||x - \mu(P)||^2 + |P| \cdot ||\mu(P) - z||^2$$

and $\mu(P) = \sum_{x \in P} x/|P|$ is the optimal 1-means solution.

Corollary

The optimal k-means solution consists of centroids of subsets of P.

Corollary

$$\sum_{x \in P} ||x - \mu(P)||^2 = \frac{1}{2|P|} \sum_{x \in P} \sum_{y \in P} ||x - y||^2.$$

Given $\varepsilon \in (0, 1)$, there is an $r \in \mathcal{O}(\varepsilon^{-2} \log n)$ and a linear map $\pi : \mathbb{R}^d \to \mathbb{R}^r$ such that for all $x, y \in P$:

$$(1-\varepsilon)||x-y||^2 < ||\pi(x)-\pi(y)||^2 < (1+\varepsilon)||x-y||^2.$$

Such a map can be found in randomized polynomial time.

Given $\varepsilon \in (0, 1)$, there is an $r \in \mathcal{O}(\varepsilon^{-2} \log n)$ and a linear map $\pi : \mathbb{R}^d \to \mathbb{R}^r$ such that for all $x, y \in P$:

$$(1-\varepsilon)||x-y||^2 < ||\pi(x)-\pi(y)||^2 < (1+\varepsilon)||x-y||^2.$$

Such a map can be found in randomized polynomial time.

Corollary

$$\sum_{x \in P} ||x - \mu(P)||^2 = \frac{1}{2|P|} \sum_{x \in P} \sum_{y \in P} ||x - y||^2$$

Given $\varepsilon \in (0, 1)$, there is an $r \in \mathcal{O}(\varepsilon^{-2} \log n)$ and a linear map $\pi : \mathbb{R}^d \to \mathbb{R}^r$ such that for all $x, y \in P$:

$$(1-\varepsilon)||x-y||^2 < ||\pi(x)-\pi(y)||^2 < (1+\varepsilon)||x-y||^2.$$

Such a map can be found in randomized polynomial time.

Corollary

The optimal 1-means cost of any $P \subset \mathbb{R}^d$ is given by

$$\sum_{x \in P} ||x - \mu(P)||^2 = \frac{1}{2|P|} \sum_{x \in P} \sum_{y \in P} ||x - y||^2.$$

Implies dimensionality reduction for *k*-means with $r \in \mathcal{O}(\varepsilon^{-2} \log n)$.

Dimensionality reductions	19.05.2015	9 / 23

Given $\varepsilon \in (0, 1)$, there is an $r \in \mathcal{O}(\varepsilon^{-2} \log n)$ and a linear map $\pi : \mathbb{R}^d \to \mathbb{R}^r$ such that for all $x, y \in P$:

 $(1-\varepsilon)||x-y||^2 < ||\pi(x)-\pi(y)||^2 < (1+\varepsilon)||x-y||^2.$

Such a map can be found in randomized polynomial time.

Lower Bound for JL-type results: Larsen, Nelson, 2014

For any d > 1 and $\varepsilon \in (0, 1/2)$, there is a point set $X \subset \mathbb{R}^d$ such that • $|X| = d^{O(1)}$

• if a linear $\pi : \mathbb{R}^d \to \mathbb{R}^r$ provides the JL guarantee for X, then $r \in \Omega(\min\{d, \varepsilon^{-2} \log n\})$

Implies dimensionality reduction for *k*-means with $r \in \mathcal{O}(\varepsilon^{-2} \log n)$.

Dimensi	onality	/ reduc	ctions

Lower Bound of $\Omega(\varepsilon^{-2} \log n)$ for JL-type results

\rightsquigarrow Is this a lower bound for the *k*-means problem, too?

Lower Bound of $\Omega(\varepsilon^{-2} \log n)$ for JL-type results

 \rightsquigarrow Is this a lower bound for the *k*-means problem, too?

No!

But dimensionality reduction must not preserve pairwise distances!

Lower Bound of $\Omega(\varepsilon^{-2} \log n)$ for JL-type results

 \rightsquigarrow Is this a lower bound for the *k*-means problem, too?

No!

But dimensionality reduction must not preserve pairwise distances!

Recall: *k*-means cost function

$$\operatorname{cost}(P, C) = \sum_{p \in P} \min_{c \in C} ||p - c||^2$$

Dimensionality reduction

 $P \subset \mathbb{R}^d$ is replaced by $Q \subset \mathbb{R}^d$ of smaller intrinsic dimension such that

```
|\text{cost}(Q, C) - \text{cost}(P, C)| \le \varepsilon \cdot \text{cost}(P, C)
```

holds for all sets $C \subset \mathbb{R}^d$ of k centers.

Use the Singular Value Decomposition!

Use the Singular Value Decomposition!

SVD-based results for k-means

- [Drineas, Frieze, Kannan, Vempala, Vinay, 1999]
 2-approximation algorithm that projects to k dimensions by SVD
- [McSherry, 2001], [Awashti, Sheffet, 2014]
 4-guarantee with k dimensions based on SVD

Use the Singular Value Decomposition!

SVD-based results for k-means

- [Drineas, Frieze, Kannan, Vempala, Vinay, 1999]
 2-approximation algorithm that projects to k dimensions by SVD
- [McSherry, 2001], [Awashti, Sheffet, 2014]
 4-guarantee with k dimensions based on SVD

More precise idea

Project to more than k dimensions based on SVD!

Dimens	ionalit	ly red	luctions

Use the Singular Value Decomposition!

SVD-based results for k-means

- [Drineas, Frieze, Kannan, Vempala, Vinay, 1999]
 2-approximation algorithm that projects to k dimensions by SVD
- [McSherry, 2001], [Awashti, Sheffet, 2014]
 4-guarantee with k dimensions based on SVD
- [Boutsidis, Mahoney, Drineas, 2009]
 (2 + ε)-guarantee with Θ̃(k/ε²) dimensions (SVD+sampling)

More precise idea

Project to more than k dimensions based on SVD!

Dimens	ionalit	ly red	luctions

The Singular Value Decomposition

- singular vectors v_1, \ldots, v_d , form a basis •
- ordered according to singular values $\sigma_1 \geq \ldots \geq \sigma_r \geq 0$ 0

- singular vectors v_1, \ldots, v_d , form a basis
- ordered according to singular values $\sigma_1 \ge \ldots \ge \sigma_r \ge 0$

- singular vectors v_1, \ldots, v_d , form a basis
- ordered according to singular values $\sigma_1 \ge \ldots \ge \sigma_r \ge 0$

- singular vectors v_1, \ldots, v_d , form a basis
- ordered according to singular values $\sigma_1 \ge \ldots \ge \sigma_r \ge 0$

- singular vectors v₁,..., v_d, form a basis
- ordered according to singular values $\sigma_1 \ge \ldots \ge \sigma_r \ge 0$

SVD-based projections

 \rightsquigarrow Project to the span of the first *m* singular vectors, V_m .

Dimensionality reductions

Deal with an easier problem first

~ Subspace Approximation

Deal with an easier problem first

~ Subspace Approximation

The Subspace Approximation Problem

Given $P \subset \mathbb{R}^d$, find a *k*-dimensional subspace *V* that minimizes

$$\sum_{\mathbf{x}\in P}||\mathbf{x}-\pi_V(\mathbf{x})||^2$$

where $\pi_V(x)$ is the perpendicular projection of *x* to *V*.

Definition and Goal

Deal with an easier problem first

~ Subspace Approximation

The Subspace Approximation Problem

Given $P \subset \mathbb{R}^d$, find a *k*-dimensional subspace *V* that minimizes

$$\sum_{\mathbf{x}\in P}||\mathbf{x}-\pi_V(\mathbf{x})||^2$$

where $\pi_V(x)$ is the perpendicular projection of x to V.

If we wanted to solve the subspace approximation problem... The span of the first k singular vectors V_k is the optimal solution!

If we wanted to solve the subspace approximation problem... The span of the first k singular vectors V_k is the optimal solution!

Dimensionality reduction for subspace approximation

 $P \subset \mathbb{R}^d$ is replaced by $Q \subset \mathbb{R}^d$ of smaller intrinsic dimension such that

$$\Big|\sum_{oldsymbol{y}\in oldsymbol{Q}}||oldsymbol{y}-\pi_V(oldsymbol{y})||^2 \qquad -\sum_{oldsymbol{x}\in oldsymbol{P}}||oldsymbol{x}-\pi_V(oldsymbol{x})||^2\Big|\leq arepsilon\sum_{oldsymbol{x}\in oldsymbol{P}}||oldsymbol{x}-\pi_V(oldsymbol{x})||^2\Big|$$

holds for all k-dimensional subspaces V.

If we wanted to solve the subspace approximation problem... The span of the first k singular vectors V_k is the optimal solution!

Dimensionality reduction for subspace approximation

 $P \subset \mathbb{R}^d$ is replaced by $Q \subset \mathbb{R}^d$ of smaller intrinsic dimension such that

$$\Big|\sum_{\boldsymbol{y}\in\boldsymbol{Q}}||\boldsymbol{y}-\pi_{\boldsymbol{V}}(\boldsymbol{y})||^{2}+\Delta-\sum_{\boldsymbol{x}\in\boldsymbol{P}}||\boldsymbol{x}-\pi_{\boldsymbol{V}}(\boldsymbol{x})||^{2}\Big|\leq\varepsilon\sum_{\boldsymbol{x}\in\boldsymbol{P}}||\boldsymbol{x}-\pi_{\boldsymbol{V}}(\boldsymbol{x})||^{2}$$

holds for all k-dimensional subspaces V.

If we wanted to solve the subspace approximation problem... The span of the first k singular vectors V_k is the optimal solution!

Dimensionality reduction for subspace approximation

 $P \subset \mathbb{R}^d$ is replaced by $Q \subset \mathbb{R}^d$ of smaller intrinsic dimension such that

$$\Big|\sum_{\boldsymbol{y}\in \boldsymbol{Q}}||\boldsymbol{y}-\pi_{\boldsymbol{V}}(\boldsymbol{y})||^{2}+\Delta-\sum_{\boldsymbol{x}\in \boldsymbol{P}}||\boldsymbol{x}-\pi_{\boldsymbol{V}}(\boldsymbol{x})||^{2}\Big|\leq \varepsilon\sum_{\boldsymbol{x}\in \boldsymbol{P}}||\boldsymbol{x}-\pi_{\boldsymbol{V}}(\boldsymbol{x})||^{2}$$

holds for all k-dimensional subspaces V.

→ want to provide an oracle that can answer subpace queries

Dimensionality re	ductions
-------------------	----------

What is the squared distance between a subspace and a point?

What is the squared distance between a subspace and a point?

$$||x - \pi_V(x)||^2 = ||x||^2 - ||\pi_V(x)||^2$$

- gets closer to $||x||^2$ if k is small compared to d
- subspace 'chooses' k directions where the length is disregarded

- gets closer to $||x||^2$ if k is small compared to d
- subspace 'chooses' k directions where the length is disregarded
- First idea: Just say $\sum_{x \in P} ||x||^2!$

- gets closer to $||x||^2$ if k is small compared to d
- subspace 'chooses' k directions where the length is disregarded
- First idea: Just say $\sum_{x \in P} ||x||^2!$

• Problem: *P* lies within *k* dimensions \rightarrow true answer can be 0

- gets closer to $||x||^2$ if k is small compared to d
- subspace 'chooses' k directions where the length is disregarded
- First idea: Just say $\sum_{x \in P} ||x||^2!$
- Problem: P lies within k dimensions → true answer can be 0
- Second idea: Store most important dimensions and lost length!
- \rightsquigarrow Project points to V_m for some nice m, set $\Delta := \sum_{i=m+1}^r \sigma_i^2$.

for k-means

 σ_1

 σ_2

The Singular Value Decomposition (SVD)

distance to subspace gets closer to ||x||² if k is small compared to d
subspace 'chooses' k directions where the length is disregarded

• distance to subspace gets closer to $||x||^2$ if k is small compared to d

subspace 'chooses' k directions where the length is disregarded

Assumption for this talk

Query subspace is spanned by singular vectors

Dimensionality reductions

for k-means

Dimensionality reduction

Project *P* to
$$V_m$$
, store $\sum_{i=m+1}^r \sigma_i^2!$

Task: Report distance to a given query subspace

Query subspace 'disregards' length in k directions

we want to report $\sum ||x||^2 - disregarded length$

Project *P* to
$$V_m$$
, store $\sum_{i=m+1}^r \sigma_i^2!$

Task: Report distance to a given query subspace

• Query subspace 'disregards' length in k directions

• we want to report $\sum ||x||^2 - disregarded length$

$$\sigma_1^2 \quad \sigma_2^2 \quad \sigma_3^2 \dots \sigma_k^2 \quad \sigma_{k+1}^2 \dots \sigma_{2k}^2 \dots \sigma_m^2 \quad \sigma_{m+1}^2 \dots \sigma_{m+k}^2 \dots \sigma_{r-1}^2 \quad \sigma_r^2$$

• we report $\sum_{i=m+1}^{d} \sigma_i^2$ plus correct contribution of first *m*

• Error: Dimensions we report but are disregarded

Project *P* to
$$V_m$$
, store $\sum_{i=m+1}^r \sigma_i^2!$

Task: Report distance to a given query subspace

• Query subspace 'disregards' length in k directions

• we want to report $\sum ||x||^2 - disregarded length$

$$\sigma_1^2 \quad \sigma_2^2 \quad \sigma_3^2 \dots \sigma_k^2 \quad \sigma_{k+1}^2 \dots \sigma_{2k}^2 \dots \sigma_m^2 \quad \sigma_{m+1}^2 \dots \sigma_{m+k}^2 \dots \sigma_{r-1}^2 \quad \sigma_r^2$$

• we report $\sum_{i=m+1}^{d} \sigma_i^2$ plus correct contribution of first *m*

• Error: Dimensions we report but are disregarded

Project *P* to
$$V_m$$
, store $\sum_{i=m+1}^r \sigma_i^2!$

Task: Report distance to a given query subspace

• Query subspace 'disregards' length in k directions

• we want to report $\sum ||x||^2 - disregarded length$

$$\sigma_1^2 \quad \sigma_2^2 \quad \sigma_3^2 \dots \sigma_k^2 \quad \sigma_{k+1}^2 \dots \sigma_{2k}^2 \dots \sigma_m^2 \quad \sigma_{m+1}^2 \dots \sigma_{m+k}^2 \dots \sigma_{r-1}^2 \quad \sigma_r^2$$

• we report $\sum_{i=m+1}^{d} \sigma_i^2$ plus correct contribution of first *m*

• Error: Dimensions we report but are disregarded

Project *P* to
$$V_m$$
, store $\sum_{i=m+1}^r \sigma_i^2!$

Task: Report distance to a given query subspace

• Query subspace 'disregards' length in k directions

• we want to report $\sum ||x||^2 - disregarded length$

$$\sigma_1^2 \quad \sigma_2^2 \quad \sigma_3^2 \dots \sigma_k^2 \quad \sigma_{k+1}^2 \dots \sigma_{2k}^2 \dots \sigma_m^2 \quad \sigma_{m+1}^2 \dots \sigma_{m+k}^2 \dots \sigma_{r-1}^2 \quad \sigma_r^2$$

• we report $\sum_{i=m+1}^d \sigma_i^2$ plus correct contribution of first *m*
• Error: Dimensions we report but are disregarded $\leq \sum_{i=m+1}^{m+k} \sigma_i^2$

Project *P* to
$$V_m$$
, store $\sum_{i=m+1}^r \sigma_i^2!$

Task: Report distance to a given query subspace

• Query subspace 'disregards' length in k directions

• we want to report $\sum ||x||^2 - disregarded length$

$$\sigma_1^2 \quad \sigma_2^2 \quad \sigma_3^2 \dots \sigma_k^2 \quad \sigma_{k+1}^2 \dots \sigma_{2k}^2 \dots \sigma_m^2 \quad \sigma_{m+1}^2 \dots \sigma_{m+k}^2 \dots \sigma_{r-1}^2 \quad \sigma_r^2$$

• we report $\sum_{i=m+1}^{d} \sigma_i^2$ plus correct contribution of first *m*

• Error: Dimensions we report but are disregarded $\leq \sum_{i=m+1}^{m+k} \sigma_i^2$

Core idea

Make *m* large enough such that $\sigma_{m+1}^2 + \ldots + \sigma_{m+k}^2$ is small compared to $\sigma_{k+1}^2 + \sigma_2^2 \ldots + \ldots + \sigma_r^2! \longrightarrow m \ge \lceil k/\varepsilon \rceil$

For any $P \in \mathbb{R}^d$, $k, \varepsilon \in (0, 1)$, $n, d \ge k + \lceil k/\varepsilon \rceil$, there exists a Q with intrinsic dimension $\lceil k/\varepsilon \rceil$ and a constant Δ such that

$$\Big|\sum_{x\in Q}||y-\pi_V(y)||^2+\Delta-\sum_{x\in P}||x-\pi_V(x)||^2\Big|\leq arepsilon\sum_{x\in P}||x-\pi_V(x)||^2$$

holds for all *k*-dimensional subspaces *V*.

For any $P \in \mathbb{R}^d$, $k, \varepsilon \in (0, 1)$, $n, d \ge k + \lceil k/\varepsilon \rceil$, there exists a Q with intrinsic dimension $\lceil k/\varepsilon \rceil$ and a constant Δ such that

$$\Big|\sum_{x\in Q}||y-\pi_V(y)||^2+\Delta-\sum_{x\in P}||x-\pi_V(x)||^2\Big|\leq arepsilon\sum_{x\in P}||x-\pi_V(x)||^2$$

holds for all k-dimensional subspaces V.

• *Q* is the projection of *P* to V_m with $m = \lceil k/\varepsilon \rceil$

For any $P \in \mathbb{R}^d$, $k, \varepsilon \in (0, 1)$, $n, d \ge k + \lceil k/\varepsilon \rceil$, there exists a Q with intrinsic dimension $\lceil k/\varepsilon \rceil$ and a constant Δ such that

$$\Big|\sum_{x\in Q}||y-\pi_V(y)||^2+\Delta-\sum_{x\in P}||x-\pi_V(x)||^2\Big|\leq arepsilon\sum_{x\in P}||x-\pi_V(x)||^2$$

holds for all k-dimensional subspaces V.

• *Q* is the projection of *P* to V_m with $m = \lfloor k/\varepsilon \rfloor$ A_m

For any $P \in \mathbb{R}^d$, $k, \varepsilon \in (0, 1)$, $n, d \ge k + \lceil k/\varepsilon \rceil$, there exists a Q with intrinsic dimension $\lceil k/\varepsilon \rceil$ and a constant Δ such that

$$\Big|\sum_{x\in Q}||y-\pi_V(y)||^2+\Delta-\sum_{x\in P}||x-\pi_V(x)||^2\Big|\leq arepsilon\sum_{x\in P}||x-\pi_V(x)||^2$$

holds for all k-dimensional subspaces V.

- *Q* is the projection of *P* to V_m with $m = \lfloor k/\varepsilon \rfloor$ A_m
- Δ is the lost squared length $\sum_{i=m+1}^{r} \sigma_i^2$

For any $P \in \mathbb{R}^d$, $k, \varepsilon \in (0, 1)$, $n, d \ge k + \lceil k/\varepsilon \rceil$, there exists a Q with intrinsic dimension $\lceil k/\varepsilon \rceil$ and a constant Δ such that

$$\Big|\sum_{x\in Q}||y-\pi_V(y)||^2+\Delta-\sum_{x\in P}||x-\pi_V(x)||^2\Big|\leq arepsilon\sum_{x\in P}||x-\pi_V(x)||^2$$

holds for all k-dimensional subspaces V.

• *Q* is the projection of *P* to V_m with $m = \lceil k/\varepsilon \rceil$ **A**_m

• Δ is the lost squared length $\sum_{i=m+1}^{r} \sigma_i^2$

• maximum error is $\sum_{i=m+1}^{m+k} \sigma_i^r \le \varepsilon \sum_{i=k+1}^r \sigma_i^r$

How does this help for *k*-means?

Our idea: Split k-means cost into two terms

Our idea: Split *k*-means cost into two terms

For any k-dimensional subspace,

approximate squared distances to and within the subspace!

Our idea: Split *k*-means cost into two terms

For any k-dimensional subspace,

approximate squared distances to and within the subspace!

Cohen, Elder, Musco, Musco, Persu, 2015:

This is unnecessary, we are already done!

Dimensionality reductions

for k-means

Better Plan

Cohen, Elder, Musco, Musco, Persu, 2015:

This is unnecessary, we are already done!

Dimensionality reductions

for k-means

19.05.2015 21 / 23

Let $P \subseteq \mathbb{R}^d$, let *C* be *k* centers

Cohen, Elder, Musco, Musco, Persu, 2015:

This is unnecessary, we are already done!

Dimensionality reductions

for k-means

19.05.2015 21 / 23

- Let $P \subseteq \mathbb{R}^d$, let *C* be *k* centers
- Store the points as rows of a matrix $A \in \mathbb{R}^{n \times d}$

Cohen, Elder, Musco, Musco, Persu, 2015:

This is unnecessary, we are already done!

Dimensionality reductions

for k-means

19.05.2015 21 / 23

Let $P \subseteq \mathbb{R}^d$, let *C* be *k* centers

• Store the points as rows of a matrix $A \in \mathbb{R}^{n \times d}$

• Define
$$(X_C)_{ij} = \begin{cases} 1/\sqrt{|C_j|} & \text{if } x_i \in C_j \\ 0 & \text{else} \end{cases} \rightsquigarrow (n \times k)$$
-matrix

Cohen, Elder, Musco, Musco, Persu, 2015:

This is unnecessary, we are already done!

Dimensionality reductions	Dimensi	ionality	reduc	tions
---------------------------	---------	----------	-------	-------

for k-means

Let $P \subseteq \mathbb{R}^d$, let *C* be *k* centers

• Store the points as rows of a matrix $A \in \mathbb{R}^{n \times d}$

• Define
$$(X_C)_{ij} = \begin{cases} 1/\sqrt{|C_j|} & \text{if } x_i \in C_j \\ 0 & \text{else} \end{cases} \rightsquigarrow (n \times k)$$
-matrix
• $X_C X_C^T A = \begin{pmatrix} \dots \\ \mu(C(x_j)) \\ \dots \end{pmatrix}$

Cohen, Elder, Musco, Musco, Persu, 2015:

This is unnecessary, we are already done!

Dimensional	lity reductions

for k-means

Let $P \subseteq \mathbb{R}^d$, let *C* be *k* centers

• Store the points as rows of a matrix $A \in \mathbb{R}^{n \times d}$

• Define
$$(X_C)_{ij} = \begin{cases} 1/\sqrt{|C_j|} & \text{if } x_i \in C_j \\ 0 & \text{else} \end{cases} \rightsquigarrow (n \times k)$$
-matrix
• $X_C X_C^T A = \begin{pmatrix} \dots \\ \mu(C(x_j)) \\ \dots \end{pmatrix}$
• $\rightsquigarrow \sum_{j=1}^n ||x_j - \mu(C(x_j))||^2 = ||A - X_C X_C^T A||_F^2$

Cohen, Elder, Musco, Musco, Persu, 2015: This is unnecessary, we are already done!

Dimensional	مصحافه بالمحسين
TIMPASIANA	nv renurunnis
Dimensiona	

Let $P \subseteq \mathbb{R}^d$, let *C* be *k* centers

• Store the points as rows of a matrix $A \in \mathbb{R}^{n \times d}$

• Define
$$(X_C)_{ij} = \begin{cases} 1/\sqrt{|C_j|} & \text{if } x_i \in C_j \\ 0 & \text{else} \end{cases} \rightsquigarrow (n \times k)$$
-matrix
• $X_C X_C^T A = \begin{pmatrix} \dots \\ \mu(C(x_j)) \\ \dots \end{pmatrix}$
• $\rightsquigarrow \sum_{j=1}^n ||x_j - \mu(C(x_j))||^2 = ||A - X_C X_C^T A||_F^2$
• $X_C X_C^T$ is a projection matrix and has rank $k!$

Cohen, Elder, Musco, Musco, Persu, 2015: This is unnecessary, we are already done!

Dimoncionalit	v roductions
	vieuuciions

Let $P \subseteq \mathbb{R}^d$, let *C* be *k* centers

• Store the points as rows of a matrix $A \in \mathbb{R}^{n \times d}$

• Define
$$(X_C)_{ij} = \begin{cases} 1/\sqrt{|C_j|} & \text{if } x_i \in C_j \\ 0 & \text{else} \end{cases} \rightsquigarrow (n \times k)$$
-matrix
• $X_C X_C^T A = \begin{pmatrix} \dots \\ \mu(C(x_j)) \\ \dots \end{pmatrix}$

•
$$\rightarrow \sum_{j=1}^{n} ||x_j - \mu(C(x_j))||^2 = ||A - X_C X_C^T A||_F^2$$

- $X_C X_C^T$ is a projection matrix and has rank k!
- Theorem already works for X_C , result for k-means immediate

Cohen, Elder, Musco, Musco, Persu, 2015:

This is unnecessary, we are already done!

Dimensionalit	v reduc	tions
	,	
The *k*-means problem is equivalent to a constraint subspace approximation problem

The *k*-means problem is equivalent to a constraint subspace approximation problem in \mathbb{R}^n !

The *k*-means problem is equivalent to a constraint subspace approximation problem in \mathbb{R}^n !

Fits the columns of *A* to a *k*-dimensional subspace.

The *k*-means problem is equivalent to a constraint subspace approximation problem in \mathbb{R}^n !

Fits the columns of *A* to a *k*-dimensional subspace.

Apply dimensionality reduction for subspace approximation
Result is a (*n* × *d*)-matrix of rank *m*

The *k*-means problem is equivalent to a constraint subspace approximation problem in \mathbb{R}^n !

Fits the columns of A to a k-dimensional subspace.

Apply dimensionality reduction for subspace approximation
Result is a (*n* × *d*)-matrix of rank *m*

Dimensionality reduction for *k*-means to $\lceil k/\varepsilon \rceil$ dimensions!

For any $\varepsilon > 0$ there exist n, d, k and a point set $P \subseteq \mathbb{R}^d$ such that

- projecting to V_m with $m := \lceil k/\varepsilon \rceil 1$
- and computing optimal centers on V_m
- does not give a $(1 + \varepsilon)$ -approximation

For any $\varepsilon > 0$ there exist n, d, k and a point set $P \subseteq \mathbb{R}^d$ such that

- projecting to V_m with $m := \lceil k/\varepsilon \rceil 1$
- and computing optimal centers on V_m
- does not give a $(1 + \varepsilon)$ -approximation

Construction

- points with $\lceil k/\varepsilon \rceil + k 1$ dimensions
- place simplex in k 1 dimensions
- place a Gaussian cloud in remaining $\lceil k/\varepsilon \rceil$ dimensions

Optimal solution: One center for Gaussian cloud, k - 1 for simplex

For any $\varepsilon > 0$ there exist n, d, k and a point set $P \subseteq \mathbb{R}^d$ such that

- projecting to V_m with $m := \lceil k/\varepsilon \rceil 1$
- and computing optimal centers on V_m
- does not give a $(1 + \varepsilon)$ -approximation

Construction

- points with $\lceil k/\varepsilon \rceil + k 1$ dimensions
- place simplex in k 1 dimensions
- place a Gaussian cloud in remaining $\lceil k/\varepsilon \rceil$ dimensions

Optimal solution: One center for Gaussian cloud, k - 1 for simplex

Parameters are adjusted such that whp

- largest [k/ε] singular vectors lie in the cloud
- $\bullet \rightsquigarrow$ simplex collapses to origin \rightsquigarrow too high clustering cost

For any $\varepsilon > 0$ there exist n, d, k and a point set $P \subseteq \mathbb{R}^d$ such that

- projecting to V_m with $m := \lceil k/\varepsilon \rceil 1$
- and computing optimal centers on V_m
- does not give a $(1 + \varepsilon)$ -approximation

Construction

- points with $\lceil k/\varepsilon \rceil + k 1$ dimensions
- place simplex in k 1 dimensions
- place a Gaussian cloud in remaining $\lceil k/\varepsilon \rceil$ dimensions

Optimal solution: One center for Gaussian cloud, k - 1 for simplex

Thank you for your attention!

Dimens	ionality	/ reduc	tions