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The k-means problem

@ Given a point set P C R”,

@ compute a set C C R”

with |C| = k centers

@ which minimizes cost(P, C)
_ i _ o2
= _min|lp—clf?,

peP

the sum of the squared
distances.

@ induces a partitioning of the
input point set
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Coreset (idea)
@ compute a smaller weighted point set
@ that preserves the k-means objective,

@ i.e., the sum of the weighted squared distances is similar
o for all sets of k centers

Why for all centers?
@ coreset and input should look alike for k-means

@ assume optimizing over the possible centers

o if the cost is underestimated for certain center sets,
then they might be mistakenly assumed to be optimal

v

Very convenient, e.g. for usage in data streams or distributed settings )
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Strong Coresets [Har-Peled, Mazumdar, 2004]
Fora P c RY, a weighted set S ¢ R% is a (1 + ¢)-coreset if

|costy (S, C) — cost(P, C)| < ecost(P, C)

holds for all sets C ¢ RY of k centers.

v

Space reduction: Size of S should be polylogarithmic in n or constant J

Earlier coreset definitions e.g. in [AHPV04], [BHPI102], [199], [MOPO01] J
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[Drineas et. al., 1999]

@ projection to first k
principal components

@ 2-approximation
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[Drineas et. al., 1999] | [Johnson, Lindenstrauss, 1984]

@ projection to first k @ random projection,
principal components target dimension ©(log n/s?)

@ 2-approximation @ (1 + ¢)-coreset-type guarantee

[BMDO09] 2 + ¢, B(k/<?) | [BZD10] 2 +¢, O(k/<?) ]
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P c R is replaced by P’ ¢ RY of smaller intrinsic dimension such that

|cost(P’, C) — cost(P, C)| < ecost(P, C)

holds for all sets C c RY of k centers.

Strong Coresets [Har-Peled, Mazumdar, 2004]

Fora P c RY, a weighted set S ¢ R? with |S| < |P|is a (1 +¢)-coreset
if
|costy (S, C) — cost(P, C)| < ecost(P, C)

holds for all sets C c RY of k centers.
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Moving points to reduce their complexity [HPM04,FS05]

Move points in P by using a mapping = : P — RY that satisfies

2
x —7(x)|2 < S OPT.
16

xXeP
Then it holds for every set of k centers C ¢ RY that

| cost((P), C) — cost(P, C)| < e - cost(P).
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Then it holds for every set of k centers C ¢ RY that

| cost((P), C) — cost(P, C)| < e - cost(P).
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P

Used in combination with grids [HPMO04], [HPKO05], [FS05], [FGSSS13]

V.

Coresets, Dimensionality reduction 02/18/2015 717
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Move points in P by using a mapping = : P — RY that satisfies
2
_ 2 < c
> llx — (x| 1 OPT.

xXeP
Then it holds for every set of k centers C ¢ RY that

| cost((P), C) — cost(P, C)| < e - cost(P).
A ; 5 NN
P

Used in combination with grids [HPMO04], [HPKO05], [FS05], [FGSSS13]
(Coreset sizes depend exponentially on the dimension d)

v
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@ draw a point x € P uniformly at random
@ — unbiased extimator for cost(P, C)

o for any fixed set of k centers C ¢ R
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[Hoeffding, 1963], [Haussler, 1992], [MOP, 2001], [Chen, 2006]
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Reduce variance by. ..

@ partitioning P into sets with small diameter [C06]

@ sampling according to cost based probabilities [FMS07]
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Random Sampling Problem

@ draw a point x € P uniformly at random @ high variance
@ — unbiased extimator for cost(P, C) o large

o for any fixed set of k centers C ¢ R? sample set

[Hoeffding, 1963], [Haussler, 1992], [MOP, 2001], [Chen, 2006]
O(k -logn- n-diam(P)/(¢? - OPT)) is a sufficient sample size

Reduce variance by. ..

@ partitioning P into sets with small diameter [C06]

@ sampling according to cost based probabilities [FMS07]

@ sampling according to sensitivity based probabilities [LS10, FL11]

Feldman, Langberg (2011) get a coreset size of O(kd /= *). J
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[Zhang, Ramakrishnan, Livny, 1996]

It holds for any P c R? and any z € R that
Dolix=zIF =) lx = w(P)IIZ+1P| - |lu(P) - 2P,
xeP xeP

where p(P) = > ,.p x/|P| is the centroid of P.
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[Zhang, Ramakrishnan, Livny, 1996]
It holds for any P c R? and any z € R that
Dolix=zIF =) lx = w(P)IIZ+1P| - |lu(P) - 2P,

xeP xeP

where p(P) = > ,.p x/|P| is the centroid of P.

Implications

@ centroid is always the optimal 1-means solution

@ optimal solution consists of centroids of subsets

@ centroid (plus constant) is an (1, =)-coreset with no error
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[Zhang, Ramakrishnan, Livny, 1996]

It holds for any P c R? and any z € R that
Dolix=zIF =) lx = w(P)IIZ+1P| - |lu(P) - 2P,
xeP xeP

where p(P) = > ,.p x/|P| is the centroid of P.

Neat exact coreset for k = 1: centroid plus constant
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Identifying fixed costs Combinatorial coreset construction

Application for coresets
o |dea: Store fixed costs in an additional constant
@ Subset of points with same center pay a fixed basic cost
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Identifying fixed costs Combinatorial coreset construction

Application for coresets
o |dea: Store fixed costs in an additional constant
@ Subset of points with same center pay a fixed basic cost

1. start with an (approximately) optimal clustering

2. for each subset in the partitioning, test:

3. optimal k-means cost < optimal 1-means cost / (1 +¢) ?
4. If yes, subdivide and recurse on the subsets

5. If not, replace by centroid plus constant

Notice: Stop recursion at level O(log;, . ~2) and replace by centroid

v
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Application for coresets
o |dea: Store fixed costs in an additional constant
@ Subset of points with same center pay a fixed basic cost

1. start with an (approximately) optimal clustering

2. for each subset in the partitioning, test:

3. optimal k-means cost < optimal 1-means cost / (1 +¢) ?
4. If yes, subdivide and recurse on the subsets

5. If not, replace by centroid plus constant

Notice: Stop recursion at level O(log;, . ~2) and replace by centroid

@ Corset has size O (ko('°91+s 5_2)> = O(kO(c"?loge™T))

@ number of points is independent of nand d

v

v
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Identifying fixed costs Combinatorial coreset construction

Application for coresets
o |dea: Store fixed costs in an additional constant
@ Subset of points with same center pay a fixed basic cost

For all subsets in our partitioning:

@ either a we stop dividing at some point

— points can pick the same center with not much error
@ or 1-means cost falls below threshold

— use movement lemma to move points to the centroid

@ Corset has size O (ko('°91+s 5_2)> = O(kO(c"?loge™T))
@ number of points is independent of nand d
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Identifying fixed costs Smaller coresets via dimensionality reduction

Now
@ much smaller coreset size
@ obtained by reducing the intrinsic dimension first
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Identifying fixed costs Smaller coresets via dimensionality reduction

Now
@ much smaller coreset size
@ obtained by reducing the intrinsic dimension first

@ Recall: Feldman, Langberg obtain coreset with O(kd/=*) points
@ reduce dimension, compute coreset
@ d vanishes from coreset size

Theorem

Forany P e RY, k, e € (0,1), n,d > k + [18k/£?], there exists
a P’ with intrinsic dimension [18k/c?] and a constant A such that

| cost(P’, C) + A — cost(P, C)| < ecost(P, C)

holds for all sets C c RY of k centers.

v
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Identifying fixed costs Smaller coresets via dimensionality reduction

Now
@ much smaller coreset size
@ obtained by reducing the intrinsic dimension first

@ Recall: Feldman, Langberg obtain coreset with O(kd/=*) points
@ reduce dimension, compute coreset
@ d vanishes from coreset size — O(k?/=%) points

Theorem

Forany PcRY, k, e € (0,1), n,d > k + [18k/£?], there exists
a P’ with intrinsic dimension [18k/c?] and a constant A such that

| cost(P’, C) + A — cost(P, C)| < ecost(P, C)

holds for all sets C c RY of k centers.

v
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Identifying fixed costs Smaller coresets via dimensionality reduction

[Drineas, Frieze, Kannan, Vempala, Vinay, 1999]
Let P be a set of n points in R". Consider the best fit subspace

L i 2 n
Vi := arg dimrp‘l/r)]:kgjd(p, V)2 c R".

Solving the projected instance in Vj yields a 2-approximation.
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Identifying fixed costs Smaller coresets via dimensionality reduction

[Drineas, Frieze, Kannan, Vempala, Vinay, 1999]
Let P be a set of n points in R". Consider the best fit subspace

L i 2 n
Vi := arg dimrp‘l/r)]:kgjd(p, V)2 c R".

Solving the projected instance in Vi yields a 2-approximation.
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Identifying fixed costs Smaller coresets via dimensionality reduction

Plan
@ O(k/<?) instead of k dimensions — (1 + ¢)-approximation
@ coreset-type guarantee
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@ coreset-type guarantee

Step 1: Split cost into two terms
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Identifying fixed costs Smaller coresets via dimensionality reduction

Plan
@ O(k/<?) instead of k dimensions — (1 + ¢)-approximation
@ coreset-type guarantee

Step 1: Split cost into two terms

_ . /

AN
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For any k-dimensional subspace,
approximate squared distances to and within the subspace!
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Identifying fixed costs Smaller coresets via dimensionality reduction

Step 2: Squared distances to any subspace are correct (approx.)
What is the squared distance between a point and a subspace?

dist?(x, V) = [|x]|2 = ||y (x)|?
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Step 2: Squared distances to any subspace are correct (approx.)
What is the squared distance between a point and a subspace?

dist?(x, V) = [|x]|2 = ||y (x)|?

@ gets closer to ||x||2 if k is small compared to d
@ subspace ‘chooses’ k directions where the length is disregarded
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Identifying fixed costs Smaller coresets via dimensionality reduction

Step 2: Squared distances to any subspace are correct (approx.)

What is the squared distance between a point and a subspace?

dist?(x, V) = [|x]|2 = ||y (x)|?

@ gets closer to ||x||2 if k is small compared to d
@ subspace ‘chooses’ k directions where the length is disregarded

o Firstidea: Just say Y, p |[x|[?!
@ Problem: P lies within kK dimensions — true answer is 0
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Identifying fixed costs Smaller coresets via dimensionality reduction

@ query subspace ‘disregards’ length in k directions
@ we want to report > ||x||> — disregarded length

Coresets, Dimensionality reduction 02/18/2015 15/17



Identifying fixed costs Smaller coresets via dimensionality reduction

@ query subspace ‘disregards’ length in k directions
@ we want to report > ||x||> — disregarded length

Best fit subspace, singular value decomposition (SVD)

Write points in row of a matix A. Then the SVD gives

@ singular values oy > ... > o4 and vectors vy, ..., vy, form a basis
@ vq,..., Vp span the best fit subspace of P,

o A=Y c?uv and projection to Vi is Ap = S a2uv|

o [|A||z =Yo7
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Identifying fixed costs Smaller coresets via dimensionality reduction

@ query subspace ‘disregards’ length in k directions
@ we want to report 3" ||x||?> — disregarded length

Best fit subspace, singular value decomposition (SVD)
Write points in row of a matix A. Then the SVD gives

@ singular values oy > ... > 04 and vectors vy, ..., vy, form a basis

@ vi,...,Vp span the best fit subspace of P,

o A=Y oc2uv] and projection to Vi is Am = 37" o?uv

o Az = T o? |

Assume that subspace is aligned to singular vectors

2 2 2 2 2 2 2 2 2

@ we report Zf’:m+1 o2 plus correct contribution of first m
@ Error: Dimensions we report but are disregarded
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@ singular values oy > ... > 04 and vectors vy, ..., vy, form a basis
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o A=Y oc2uv] and projection to Vi is Am = 37" o?uv

o Az = T o? |

Assume that subspace is aligned to singular vectors

2 2 2 2 2 2 2 2 2
(o 0o O'Sgk O'k+1...0'2k...0'm O'm+10'm+k0'd
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Identifying fixed costs Smaller coresets via dimensionality reduction

Assume that subspace is aligned to singular vectors

2 2 2 2 2 2 2 2 2 2
0'1 0'2 O'SO'k O'k+1...0'2k...0'm O'm+1...0'm+k...0'd

@ we report Zf:m .1 02 plus correct contribution of first m
@ Error: Dimensions we report but are disregarded
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Identifying fixed costs Smaller coresets via dimensionality reduction

Assume that subspace is aligned to singular vectors
2 2 2 2 2 2 2 2 2 2
0'1 0'2 O'SO'k O'k+1...0'2k...0'm O'm+1...0'm+k...0'd
@ we report Zf:m .1 02 plus correct contribution of first m

@ Error: Dimensions we report but are disregarded

Core idea
Make m large enough such that o2 | + ...+ 02
is small compared to o5 + o5 ...+ ... + 02 —m> [k/e]

Coresets, Dimensionality reduction 02/18/2015 16/17



Identifying fixed costs Smaller coresets via dimensionality reduction

Assume that subspace is aligned to singular vectors
2 2 2 2 2 2 2 2 2 2
0'1 0'2 O'30'k O'k+1...0'2k...0'm O'm+1...0'm+k...0'd
@ we report Zf’:m .1 02 plus correct contribution of first m
@ Error: Dimensions we report but are disregarded

Core idea
Make m large enough such that o2 | + ...+ 02
is small compared to o5 + o5 ...+ ... + 02 —m> [k/e]

Step 3: Squared distances within the subspace
Follows with similar measures, introduces the =2 and the constant 18 |
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Identifying fixed costs Smaller coresets via dimensionality reduction

Theorem

Forany P c RY, k, e € (0,1), n,d > k + [18k/£?], there exists
a P’ with intrinsic dimension [18k /2] and a constant A such that

| cost(P’, C) + A — cost(P, C)| < ecost(P, C)

holds for all sets C c RY of k centers.
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Theorem

Forany P c RY, k, e € (0,1), n,d > k + [18k/£?], there exists
a P’ with intrinsic dimension [18k/c?] and a constant A such that

| cost(P’, C) + A — cost(P, C)| < ecost(P, C)

holds for all sets C c RY of k centers.

Theorem

Forany P e RY, k,e € (0,1), n,d > k + [ck/<?], there exists a
weighted set S with O(k?/<®) points and a constant A such that

| cost(S, C) + A — cost(P, C)| < ecost(P, C)

holds for all sets C c RY of k centers.
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Identifying fixed costs Smaller coresets via dimensionality reduction

Theorem

Forany P c RY, k, e € (0,1), n,d > k + [18k/£?], there exists
a P’ with intrinsic dimension [18k/c?] and a constant A such that

| cost(P’, C) + A — cost(P, C)| < ecost(P, C)

holds for all sets C c RY of k centers.

Theorem

Forany P e RY, k,e € (0,1), n,d > k + [ck/<?], there exists a
weighted set S with O(k?/<®) points and a constant A such that

| cost(S, C) + A — cost(P, C)| < ecost(P, C)

holds for all sets C c RY of k centers.

Thank you for your attention!
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