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Introduction The k -means problem

The k -means problem

Given a point set P ⊆ Rn,
compute a set C ⊆ Rn

with |C| = k centers
which minimizes cost(P,C)

=
∑
p∈P

min
c∈C
||p − c||2,

the sum of the squared
distances.

induces a partitioning of the
input point set
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Input Size Reductions Coresets

Coreset (idea)
compute a smaller weighted point set
that preserves the k -means objective,
i.e., the sum of the weighted squared distances is similar
for all sets of k centers

Why for all centers?
coreset and input should look alike for k -means

assume optimizing over the possible centers
if the cost is underestimated for certain center sets,
then they might be mistakenly assumed to be optimal

Very convenient, e.g. for usage in data streams or distributed settings
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Input Size Reductions Coresets

Strong Coresets [Har-Peled, Mazumdar, 2004]

For a P ⊂ Rd , a weighted set S ⊂ Rd is a (1 + ε)-coreset if

|costw (S,C)− cost(P,C)| ≤ ε cost(P,C)

holds for all sets C ⊂ Rd of k centers.

4 2

2

5

Space reduction: Size of S should be polylogarithmic in n or constant

Earlier coreset definitions e.g. in [AHPV04], [BHPI02], [I99], [MOP01]
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Input Size Reductions Dimensionality reduction

Dimensionality reduction
Replace P by a point set P ′ of smaller intrinsic dimension

[Drineas et. al., 1999]
projection to first k
principal components
2-approximation

[BMD09] 2 + ε, Θ̃(k/ε2)

π : Rd → Rm

[Johnson, Lindenstrauss, 1984]
random projection,
target dimension Θ(log n/ε2)

(1 + ε)-coreset-type guarantee

[BZD10] 2 + ε, Θ(k/ε2)
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Input Size Reductions Reduction summary

Dimensionality reduction

P ⊂ Rd is replaced by P ′ ⊂ Rd of smaller intrinsic dimension such that∣∣cost(P ′,C)− cost(P,C)
∣∣ ≤ ε cost(P,C)

holds for all sets C ⊂ Rd of k centers.

Strong Coresets [Har-Peled, Mazumdar, 2004]

For a P ⊂ Rd , a weighted set S ⊂ Rd with |S| < |P| is a (1 + ε)-coreset
if

|costw (S,C)− cost(P,C)| ≤ ε cost(P,C)

holds for all sets C ⊂ Rd of k centers.
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Techniques Moving points

Moving points to reduce their complexity [HPM04,FS05]

Move points in P by using a mapping π : P → Rd that satisfies∑
x∈P

||x − π(x)||2 ≤ ε2

16
·OPT .

Then it holds for every set of k centers C ⊂ Rd that

| cost(π(P),C)− cost(P,C)| ≤ ε · cost(P).

4 2

2

5

Used in combination with grids [HPM04], [HPK05], [FS05], [FGSSS13]

(Coreset sizes depend exponentially on the dimension d)
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Techniques Random Sampling

Random Sampling
draw a point x ∈ P uniformly at random
→ unbiased extimator for cost(P,C)

for any fixed set of k centers C ⊂ Rd

Problem
high variance
large
sample set

[Hoeffding, 1963], [Haussler, 1992], [MOP, 2001], [Chen, 2006]

O(k · log n · n · diam(P)/(ε2 ·OPT )) is a sufficient sample size

Reduce variance by. . .
partitioning P into sets with small diameter [C06]
sampling according to cost based probabilities [FMS07]
sampling according to sensitivity based probabilities [LS10, FL11]

Feldman, Langberg (2011) get a coreset size of Õ(kd/ε−4).
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Coresets, Dimensionality reduction for the k -means problem 02/18/2015 8 / 17



Techniques Random Sampling

Random Sampling
draw a point x ∈ P uniformly at random
→ unbiased extimator for cost(P,C)

for any fixed set of k centers C ⊂ Rd

Problem
high variance
large
sample set

[Hoeffding, 1963], [Haussler, 1992], [MOP, 2001], [Chen, 2006]

O(k · log n · n · diam(P)/(ε2 ·OPT )) is a sufficient sample size

Reduce variance by. . .
partitioning P into sets with small diameter [C06]
sampling according to cost based probabilities [FMS07]
sampling according to sensitivity based probabilities [LS10, FL11]

Feldman, Langberg (2011) get a coreset size of Õ(kd/ε−4).
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Techniques Identifying fixed costs

[Zhang, Ramakrishnan, Livny, 1996]

It holds for any P ⊂ Rd and any z ∈ Rd that∑
x∈P

||x − z||2 =
∑
x∈P

||x − µ(P)||2 + |P| · ||µ(P)− z||2,

where µ(P) =
∑

x∈P x/|P| is the centroid of P.

Neat exact coreset for k = 1: centroid plus constant
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||x − µ(P)||2 + |P| · ||µ(P)− z||2,

where µ(P) =
∑

x∈P x/|P| is the centroid of P.

Implications
centroid is always the optimal 1-means solution
optimal solution consists of centroids of subsets
centroid (plus constant) is an (1, ε)-coreset with no error

Neat exact coreset for k = 1: centroid plus constant
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Identifying fixed costs Combinatorial coreset construction

Application for coresets
Idea: Store fixed costs in an additional constant
Subset of points with same center pay a fixed basic cost

Corset has size O
(

kO(log1+ε ε
−2)
)

= O(kO(ε
−2 log ε−1))

number of points is independent of n and d
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1. start with an (approximately) optimal clustering
2. for each subset in the partitioning, test:
3. optimal k -means cost ≤ optimal 1-means cost / (1 + ε) ?
4. If yes, subdivide and recurse on the subsets
5. If not, replace by centroid plus constant

Notice: Stop recursion at level O(log1+ε ε
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Identifying fixed costs Combinatorial coreset construction

Application for coresets
Idea: Store fixed costs in an additional constant
Subset of points with same center pay a fixed basic cost

For all subsets in our partitioning:
either a we stop dividing at some point

→ points can pick the same center with not much error
or 1-means cost falls below threshold

→ use movement lemma to move points to the centroid

Corset has size O
(

kO(log1+ε ε
−2)
)

= O(kO(ε
−2 log ε−1))

number of points is independent of n and d

Coresets, Dimensionality reduction for the k -means problem 02/18/2015 10 / 17



Identifying fixed costs Smaller coresets via dimensionality reduction

Now
much smaller coreset size
obtained by reducing the intrinsic dimension first

Recall: Feldman, Langberg obtain coreset with Õ(kd/ε4) points
reduce dimension, compute coreset
d vanishes from coreset size

→ Õ(k2/ε6) points

Theorem
For any P ∈ Rd , k , ε ∈ (0,1), n,d ≥ k + d18k/ε2e, there exists
a P ′ with intrinsic dimension d18k/ε2e and a constant ∆ such that

| cost(P ′,C) + ∆− cost(P,C)| ≤ ε cost(P,C)

holds for all sets C ⊂ Rd of k centers.
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Theorem
For any P ∈ Rd , k , ε ∈ (0,1), n,d ≥ k + d18k/ε2e, there exists
a P ′ with intrinsic dimension d18k/ε2e and a constant ∆ such that

| cost(P ′,C) + ∆− cost(P,C)| ≤ ε cost(P,C)

holds for all sets C ⊂ Rd of k centers.

Coresets, Dimensionality reduction for the k -means problem 02/18/2015 11 / 17



Identifying fixed costs Smaller coresets via dimensionality reduction

[Drineas, Frieze, Kannan, Vempala, Vinay, 1999]
Let P be a set of n points in Rn. Consider the best fit subspace

Vk := arg min
dim(V )=k

∑
p∈P

d(p,V )2 ⊂ Rn.

Solving the projected instance in Vk yields a 2-approximation.

= +
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Identifying fixed costs Smaller coresets via dimensionality reduction

Plan
O(k/ε2) instead of k dimensions→ (1 + ε)-approximation
coreset-type guarantee

Step 1: Split cost into two terms

= +

For any k -dimensional subspace,
approximate squared distances to and within the subspace!

Coresets, Dimensionality reduction for the k -means problem 02/18/2015 13 / 17



Identifying fixed costs Smaller coresets via dimensionality reduction

Plan
O(k/ε2) instead of k dimensions→ (1 + ε)-approximation
coreset-type guarantee

Step 1: Split cost into two terms

= +

For any k -dimensional subspace,
approximate squared distances to and within the subspace!

Coresets, Dimensionality reduction for the k -means problem 02/18/2015 13 / 17



Identifying fixed costs Smaller coresets via dimensionality reduction

Plan
O(k/ε2) instead of k dimensions→ (1 + ε)-approximation
coreset-type guarantee

Step 1: Split cost into two terms

= +

For any k -dimensional subspace,
approximate squared distances to and within the subspace!

Coresets, Dimensionality reduction for the k -means problem 02/18/2015 13 / 17



Identifying fixed costs Smaller coresets via dimensionality reduction

Step 2: Squared distances to any subspace are correct (approx.)
What is the squared distance between a point and a subspace?

dist2(x ,V ) = ||x ||2 − ||φV (x)||2

gets closer to ||x ||2 if k is small compared to d
subspace ‘chooses’ k directions where the length is disregarded

First idea: Just say
∑

x∈P ||x ||2!
Problem: P lies within k dimensions→ true answer is 0
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Identifying fixed costs Smaller coresets via dimensionality reduction

query subspace ‘disregards’ length in k directions
we want to report

∑
||x ||2 − disregarded length

Best fit subspace, singular value decomposition (SVD)
Write points in row of a matix A. Then the SVD gives

singular values σ1 ≥ . . . ≥ σd and vectors v1, . . . , vd , form a basis
v1, . . . , vm span the best fit subspace of P,
A =

∑
σ2

i uivT
i and projection to Vm is Am =

∑m
i σ

2
i uivT

i

||A||2F =
∑
σ2

i

Assume that subspace is aligned to singular vectors

. . . σ2
d

we report
∑d

i=m+1 σ
2
i plus correct contribution of first m

Error: Dimensions we report but are disregarded
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Identifying fixed costs Smaller coresets via dimensionality reduction

Assume that subspace is aligned to singular vectors

σ2
1 σ2

2 σ2
3 . . . σ

2
k σ2

k+1 . . . σ
2
2k . . . σ

2
m σ2

m+1 . . . σ
2
m+k . . . σ

2
d

we report
∑d

i=m+1 σ
2
i plus correct contribution of first m

Error: Dimensions we report but are disregarded

Core idea
Make m large enough such that σ2

m+1 + . . .+ σ2
m+k

is small compared to σ2
1 + σ2

2 . . .+ . . .+ σ2
m! → m ≥ dk/εe

Step 3: Squared distances within the subspace

Follows with similar measures, introduces the ε−2 and the constant 18
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Identifying fixed costs Smaller coresets via dimensionality reduction

Theorem
For any P ∈ Rd , k , ε ∈ (0,1), n,d ≥ k + d18k/ε2e, there exists
a P ′ with intrinsic dimension d18k/ε2e and a constant ∆ such that

| cost(P ′,C) + ∆− cost(P,C)| ≤ ε cost(P,C)

holds for all sets C ⊂ Rd of k centers.

Theorem
For any P ∈ Rd , k , ε ∈ (0,1), n,d ≥ k + dck/ε2e, there exists a
weighted set S with Õ(k2/ε6) points and a constant ∆ such that

| cost(S,C) + ∆− cost(P,C)| ≤ ε cost(P,C)

holds for all sets C ⊂ Rd of k centers.

Thank you for your attention!
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