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Clustering Algorithms: Practice and Theory

The k -means Problem
Given a point set P ⊆ Rd ,
compute a set C ⊆ Rd

with |C| = k centers
which minimizes
cost(P,C)

=
∑
p∈P

min
c∈C
||c − p||2,

the sum of the squared
distances.
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Clustering Algorithms: Practice and Theory

Popular k -means algorithms. . .
Lloyd’s algorithm (1982)
k -means++ (2007)
several approximation algorithms (recent)

. . . for Big Data
BIRCH (1996)
MacQueen’s k -means (1967)
several approximations using coresets (recent)

Implementability, Speed and good quality?

Stream-KM++ (2010)
BICO
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Clustering Algorithms: Practice and Theory

Popular k -means algorithms. . .
Lloyd’s algorithm (1982) moderate speed
k -means++ (2007) moderate speed & quality
several approximation algorithms (recent) quality

. . . for Big Data
BIRCH (1996) fast
MacQueen’s k -means (1967) fast
several approximations using coresets (recent) quality

Implementability, Speed and good quality?

Stream-KM++ (2010) next slides
BICO next slides
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Clustering Algorithms: Practice and Theory

Costs
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Clustering Algorithms: Practice and Theory

Running Time
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How BIRCH computes a summary of the data

Idea
start with BIRCH for the basic design because it is very fast
analyze its flaws
develop an improved algorithm based on
theoretical observations

Now: Description of BIRCH

Warning
BIRCH has several phases
we are only interested in the main phase
(and a little in the rebuilding phase)
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How BIRCH computes a summary of the data

BIRCH

stores points in a tree
each node represents a subset of the input point set
subset is summarized by the number of points, the centroid
of the set and the squared distances to the centroid
all points in the same subset get the same center
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How BIRCH computes a summary of the data

BIRCH
nodes in the tree represent subsets of points
points at the same node get the same center

Insertion of a new point
When a new point p is added to the tree

BIRCH searches for the ‘closest’ node according to∑
q∈(S∪{p})

(q − µ(S ∪ {p}))2 −
∑

q∈S
(q − µ(S))2

p is added to the node representing subset S∗ if∑
q∈(S∗∪{p})

(q − µS)
2/(|S∗|+ 1) ≤ T 2 for a given threshold T
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How BIRCH computes a summary of the data

150 points drawn uniformly around (−0.5,0) and (0,0.5)
75 points drawn uniformly from [−4,−2]× [4,2] as noise
Centers and partitions computed by BIRCH and BICO
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How BIRCH computes a summary of the data

Insights from BIRCH
Fast point by point updates
Tree structure

Insertion decision should be improved
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Coresets

Coresets
small summary of given data
typically of constant or polylogarithmic size
can be used to approximate the cost of the original data
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Coresets

Coresets
Given a set of points P, a weighted subset S ⊂ P is a
(k , ε)-coreset if for all sets C ⊂ C of k centers it holds

|costw (S,C)− cost(P,C)| ≤ ε cost(P,C)

where costw (S,C) =
∑

p∈S minc∈C w(p)(.p, c).

3 2

2

4
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Coresets

Merge & Reduce
read data in blocks
compute a coreset
for each block→ s
merge coresets in a
tree fashion
 space s · log n

Runtime: No asymptotic increase, but overhead in practice

BIRCH uses point-wise updates :-)
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Coresets

Insights from Coreset Threory
Limit the induced error

 Goal: Point set P ′ in each node should induce at most
ε · cost(P ′,C) error (for an optimal solution C)

 Base insertion decision on induced error
Replacing all points in a node by the (weighted) centroid is
like moving all points to the centroid
Induced error is connected to the 1-means cost of the set

Side note
Avoiding Merge & Reduce is a good idea

BICO: BIRCH meets Coresets for k -means
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BIRCH meets Coresets

BIRCH
nodes in the tree represent subsets of points
points at the same node get the same center
improve insertion decision

Adjustments
Nodes additionally have a reference point and a range

Closest is now determined by Euclidean distance
We say a node is full with regard to a point p if adding p to
the node increases its 1-means cost above a threshold T
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BIRCH meets Coresets

1. Find closest reference point
2. If node is not in range
3. Then create a new node
4. Else add to node if possible
5. If not, go one level down,
6. And Find closest child, goto 2.

Threshold T
Radius Ri
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BIRCH meets Coresets

Theorem

For T ≈ OPT/(k · log n · 8d · εd+2) and Ri :=
√

T/(8 · 2i),
the set of centroids weighted by the number of points in the
subset is a (1 + ε)-coreset
for constant d , the number of nodes is O(k · log n · ε−(d+2))

Problem
We do not know OPT and thus cannot compute T !

BICO: BIRCH meets Coresets for k -means
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BIRCH meets Coresets

Rebuilding algorithm
Double T when maximum number of nodes is reached
‘Rebuild’ the tree according to new T

Let T ′ and R′i be before and T and Ri be after the doubling
Move all nodes one level down and create empty first level
Notice that Ri =

√
T/(8 · 2i) =

√
T ′/8 · 2i−1 = R′i−1

⇒ Radius doesn’t change!
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BIRCH meets Coresets

For every node in the tree
1. Find ref. point one level higher
2. If none in range, move node

and children one level up
3. If it is in range, check T
4. If sum is smaller than T ,

merge nodes
6. Else make it a child
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BIRCH meets Coresets

Merging might result in violations of the range of nodes

Increases the coreset size by a constant factor
But does not destroy the coreset property

⇒ BICO computes a coreset in the data stream setting ¨̂

. . . if we compute lower bound on T
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The actual solution is computed with k -means++.

Adjustments

Add heuristic speed-up to find closest reference point

Speed-up
Project all ref. points to d random 1-dim. subspaces
Project new point p to the same subspaces
Count how many ref. points are in range of p in every
subspace
Search nearest neighbor in the shortest list
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Data Sets
Data Sets used in StreamKM++ paper from UCI repository:
Tower, CoverType, Census and BigCross (cross product)
CalTech128 by René Grzeszick, group of Prof. Fink
consists of 128 SIFT descriptors of an object database

Data Set Sizes
BigCross CalTech128 Census CoverType Tower

n 11620300 3168383 2458285 581012 4915200
d 57 128 68 55 3

n · d 662357100 405553024 167163380 31955660 14745600
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Implementations
Author’s implementations for StreamKM++ and BIRCH
implementation for MacQueen’s k -means from
ESMERALDA (framework by group of Prof. Fink)

Experiments
Experiments done on mud1-6 and mud8
100 runs for every test instance
values shown in the diagrams are mean values
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Trade-Off
BIRCH MQ m = 200k 100k 25k

Time 616 4241 20271 5444 618
Costs 58 · 1010 72 · 1010 51 · 1010 52 ·1010 55 · 1010

Tests run on on BigCross with k = 1000
BICO is less than 1.5 times slower than MacQueen with
m = 100k while still computing reasonable costs
faster than BIRCH for m = 25k , still much better cost than
BIRCH and MacQueen
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Ziele
Implementierung in bekanntem Framework / Anbindung

 Baustein für andere Algorithmen
Vergleich verschiedener Strategien für Nearest Neighbor

BICO: BIRCH meets Coresets for k -means



Introduction Insights from BIRCH Coreset Theory BICO Experiments End

BIRCH MQ m = 200k 100k 25k
Time 616 4241 20271 5444 618
Costs 58 · 1010 72 · 1010 51 · 1010 52 ·1010 55 · 1010

Thank you for your attention!
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