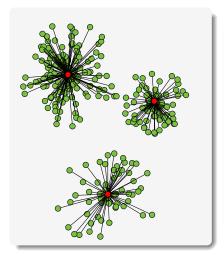
Introduction	Insights from BIRCH	Coreset Theory	BICO 000000	Experiments	End

BICO: BIRCH meets Coresets for *k*-means

Hendrik Fichtenberger, Marc Gillé, Melanie Schmidt, Chris Schwiegelshohn, Christian Sohler

Introduction •ooo	Insights from BIRCH	Coreset Theory	BICO 000000	Experiments	End
Clustering Algori	thms: Practice and Theory				



The *k*-means Problem

- Given a point set $P \subseteq \mathbb{R}^d$,
- compute a set C ⊆ ℝ^d
 with |C| = k centers
- which minimizes cost(P, C)

$$= \sum_{\boldsymbol{\rho} \in \boldsymbol{P}} \min_{\boldsymbol{c} \in \boldsymbol{C}} ||\boldsymbol{c} - \boldsymbol{\rho}||^2,$$

the sum of the squared distances.

Introduction	Insights from BIRCH	Coreset Theory	BICO 000000	Experiments	End
Clustering Algorit	hms: Practice and Theory				

Popular k-means algorithms...

- Lloyd's algorithm (1982)
- k-means++ (2007)
- several approximation algorithms (recent)

Introduction	Insights from BIRCH	Coreset Theory	BICO 000000	Experiments	End
Clustering Algorit	hms: Practice and Theory				

Popular *k*-means algorithms...

- Lloyd's algorithm (1982)
- k-means++ (2007)
- several approximation algorithms (recent)

... for Big Data

- BIRCH (1996)
- MacQueen's k-means (1967)
- several approximations using coresets (recent)

Introduction	Insights from BIRCH	Coreset Theory	BICO 000000	Experiments	End				
Clustering Algorith	Clustering Algorithms: Practice and Theory								

Popular *k*-means algorithms...

- Lloyd's algorithm (1982)
- k-means++ (2007)
- several approximation algorithms (recent)

... for Big Data

- BIRCH (1996)
- MacQueen's k-means (1967)
- several approximations using coresets (recent)

Implementability, Speed and good quality?

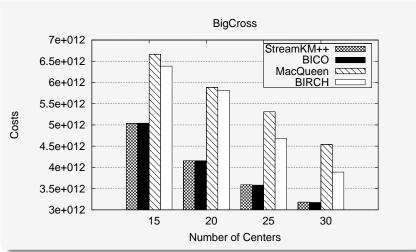
ntroduction ○●○○	Insights from BIRCH	Coreset Theory	F	eriments Er				
Clustering Algor	ustering Algorithms: Practice and Theory							
Рори	ular <i>k</i> -means alg	jorithms						
۲	 Lloyd's algorithm (1982) mod 			erate speed				
•	• k-means++ (2007) moderate spee		ed & quality					
•	 several approximation algorithms (recent) 							
fo	or Big Data							
۲	BIRCH (1996)			fast				
۲	MacQueen's k-me	eans (1967)		fast				
•	 several approximations using coresets (recent) quality 							
Impl	ementability, Sp	eed <i>and</i> goo	d quality?					

Introd 0000	luction	Insights from BIRCH	Coreset Theory	BICO 000000	Experiments	End			
Cluste	Clustering Algorithms: Practice and Theory								
	Ρορι	ılar <i>k</i> -means alg	orithms			1			
	 Lloyd's algorithm (1982) mode 			oderate sp	beed				
	• <i>I</i>	k-means++ (2007)	moderate s	beed & qu	ality			
	 several approximation algorithms (recent) quality 					ality			
	fo	r Big Data							
	• E	BIRCH (1996)				fast			
	• N	MacQueen's <i>k</i> -me	eans (1967)			fast			
	 several approximations using coresets (recent) quali 					ality			
	Implementability, Speed and good quality?								
	• 5	Stream-KM++ (20	10)		next s	lides			

Introduc 0000	tion Insights from BIRCH	Coreset Theory	BICO 000000	Experiments	End				
Cluster	Clustering Algorithms: Practice and Theory								
	Popular <i>k</i> -means alg	jorithms							
	 Lloyd's algorithm (1982) mode 			noderate sp	beed				
	• <i>k</i> -means++ (2007)	moderate	speed & qu	ality				
	 several approximation algorithms (recent) quality 								
	for Big Data								
	BIRCH (1996)				fast				
	MacQueen's k-me	eans (1967)			fast				
	 several approximations using coresets (recent) 				ality				
	Implementability, Speed and good quality?								
	Stream-KM++ (20)	10)		next s	ides				
	BICO			next s	ides				

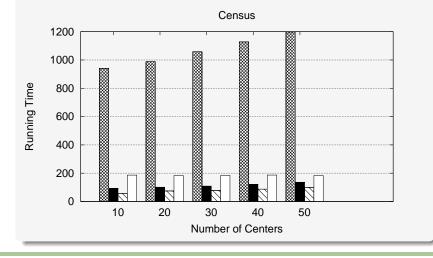
Introduction	Insights from BIRCH	Coreset Theory	BICO 000000	Experiments 0000000	End
Clustering Algorit	hms: Practice and Theory				

Costs



Introduction	Insights from BIRCH	Coreset Theory	BICO 000000	Experiments 0000000	End
Clustering Algorit	hms: Practice and Theory				

Running Time



Introduction	Insights from BIRCH	Coreset Theory	BICO 000000	Experiments 0000000	End
How BIRCH com	putes a summary of the data				

Idea

- start with BIRCH for the basic design because it is very fast
- analyze its flaws
- develop an improved algorithm based on theoretical observations

Introduction	Insights from BIRCH	Coreset Theory	BICO 000000	Experiments 0000000	End
How BIRCH comp	outes a summary of the data				

Idea

- start with BIRCH for the basic design because it is very fast
- analyze its flaws
- develop an improved algorithm based on theoretical observations

Now: Description of BIRCH

Introduction	Insights from BIRCH	Coreset Theory	BICO 000000	Experiments	End
How BIRCH comp	outes a summary of the data				

Idea

- start with BIRCH for the basic design because it is very fast
- analyze its flaws
- develop an improved algorithm based on theoretical observations

Now: Description of BIRCH

Warning

- BIRCH has several phases
- we are only interested in the main phase
- (and a little in the rebuilding phase)

Introduction	Insights from BIRCH ○●○○○	Coreset Theory	BICO 000000	Experiments	End
How BIRCH con	nputes a summary of the data				

Introduction	Insights from BIRCH ○●○○○	Coreset Theory	BICO 000000	Experiments	End
How BIRCH com	putes a summary of the data				

stores points in a tree

Introduction	Insights from BIRCH	Coreset Theory	BICO 000000	Experiments 0000000	End
How BIBCH com	putes a summary of the data				

- stores points in a tree
- each node represents a subset of the input point set

Introduction	Insights from BIRCH	Coreset Theory	BICO 000000	Experiments 0000000	End
How BIRCH com	putes a summary of the data				

- stores points in a tree
- each node represents a subset of the input point set
- subset is summarized by the number of points, the centroid of the set and the squared distances to the centroid

Introduction	Insights from BIRCH	Coreset Theory	BICO 000000	Experiments 0000000	End
How BIRCH com	putes a summary of the data				

- stores points in a tree
- each node represents a subset of the input point set
- subset is summarized by the number of points, the centroid of the set and the squared distances to the centroid
- all points in the same subset get the same center

Introduction	Insights from BIRCH	Coreset Theory	BICO 000000	Experiments	End
How BIRCH com	putes a summary of the data				

- nodes in the tree represent subsets of points
- points at the same node get the same center

Introduction	Insights from BIRCH	Coreset Theory	BICO 000000	Experiments 0000000	End
How BIRCH com	putes a summary of the data				

- nodes in the tree represent subsets of points
- points at the same node get the same center

Insertion of a new point

When a new point *p* is added to the tree

Introduction	Insights from BIRCH oo●oo	Coreset Theory	BICO 000000	Experiments 0000000	End
How BIRCH com	putes a summary of the data				

- nodes in the tree represent subsets of points
- points at the same node get the same center

Insertion of a new point

When a new point p is added to the tree

• BIRCH searches for the 'closest' node according to $\sum_{q \in (S \cup \{p\})} (q - \mu(S \cup \{p\}))^2 - \sum_{q \in S} (q - \mu(S))^2$

Introduction	Insights from BIRCH	Coreset Theory	BICO 000000	Experiments 0000000	End
How BIRCH com	putes a summary of the data				

- nodes in the tree represent subsets of points
- points at the same node get the same center

Insertion of a new point

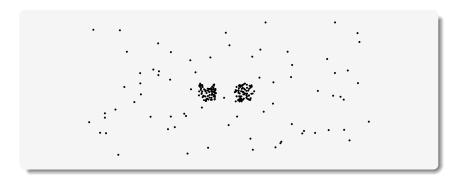
When a new point p is added to the tree

• BIRCH searches for the 'closest' node according to $\sum_{q \in (S \cup \{p\})} (q - \mu(S \cup \{p\}))^2 - \sum_{q \in S} (q - \mu(S))^2$

• p is added to the node representing subset S^* if $\sum_{q \in (S^* \cup \{p\})} (q - \mu_S)^2 / (|S^*| + 1) \le T^2 \text{ for a given threshold } T$

Introduction	Insights from BIRCH	Coreset Theory	BICO 000000	Experiments	End

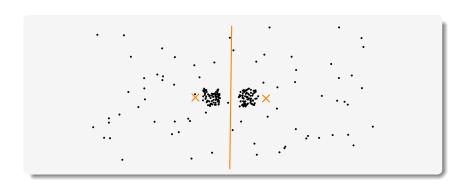
How BIRCH computes a summary of the data



- 150 points drawn uniformly around (-0.5, 0) and (0, 0.5)
- 75 points drawn uniformly from $[-4, -2] \times [4, 2]$ as noise
- Centers and partitions computed by BIRCH and BICO

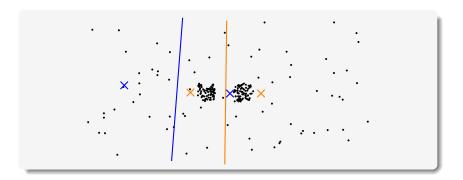
Introduction	Insights from BIRCH	Coreset Theory	BICO 000000	Experiments	End

How BIRCH computes a summary of the data



- 150 points drawn uniformly around (-0.5, 0) and (0, 0.5)
- 75 points drawn uniformly from $[-4, -2] \times [4, 2]$ as noise
- Centers and partitions computed by BIRCH and BICO

How BIRCH computes a summary of the data



- 150 points drawn uniformly around (-0.5, 0) and (0, 0.5)
- 75 points drawn uniformly from $[-4, -2] \times [4, 2]$ as noise
- Centers and partitions computed by BIRCH and BICO

Introduction	Insights from BIRCH 0000●	Coreset Theory	BICO 000000	Experiments 0000000	End
How BIRCH com	putes a summary of the data				

Insights from BIRCH

- Fast point by point updates
- Tree structure

Introduction	Insights from BIRCH 0000●	Coreset Theory	BICO 000000	Experiments 0000000	End
How BIRCH com	putes a summary of the data				

Insights from BIRCH

- Fast point by point updates
- Tree structure

• Insertion decision should be improved

Introduction	Insights from BIRCH	Coreset Theory	BICO 000000	Experiments	End
Coresets					

- small summary of given data
- typically of constant or polylogarithmic size
- can be used to approximate the cost of the original data

Introduction	Insights from BIRCH	Coreset Theory ○●○○	BICO 000000	Experiments	End
Coresets					

Given a set of points *P*, a weighted subset $S \subset P$ is a (k, ϵ) -coreset if for all sets $C \subset C$ of *k* centers it holds

 $|\operatorname{cost}_w(S, C) - \operatorname{cost}(P, C)| \le \epsilon \operatorname{cost}(P, C)$

where $cost_w(S, C) = \sum_{p \in S} \min_{c \in C} w(p)(p, c)$.

Introduction	Insights from BIRCH	Coreset Theory ○●○○	BICO 000000	Experiments	End
Coresets					

Given a set of points *P*, a weighted subset $S \subset P$ is a (k, ϵ) -coreset if for all sets $C \subset C$ of *k* centers it holds

 $|\operatorname{cost}_w(S, C) - \operatorname{cost}(P, C)| \le \epsilon \operatorname{cost}(P, C)$

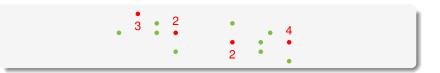
where
$$\operatorname{cost}_w(S, C) = \sum_{p \in S} \min_{c \in C} w(p)(p, c)$$
.

Introduction	Insights from BIRCH	Coreset Theory ○●○○	BICO 000000	Experiments	End
Coresets					

Given a set of points *P*, a weighted subset $S \subset P$ is a (k, ϵ) -coreset if for all sets $C \subset C$ of *k* centers it holds

 $|\operatorname{cost}_w(S, C) - \operatorname{cost}(P, C)| \le \epsilon \operatorname{cost}(P, C)$

where $cost_w(S, C) = \sum_{p \in S} \min_{c \in C} w(p)(p, c)$.

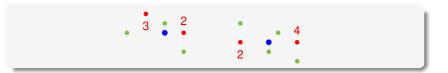


Introduction	Insights from BIRCH	Coreset Theory ○●○○	BICO 000000	Experiments	End
Coresets					

Given a set of points *P*, a weighted subset $S \subset P$ is a (k, ϵ) -coreset if for all sets $C \subset C$ of *k* centers it holds

 $|\operatorname{cost}_w(S, C) - \operatorname{cost}(P, C)| \le \epsilon \operatorname{cost}(P, C)$

where
$$cost_w(S, C) = \sum_{p \in S} \min_{c \in C} w(p)(p, c)$$
.



Introduction	Insights from BIRCH	Coreset Theory ○●○○	BICO 000000	Experiments	End
Coresets					

Given a set of points *P*, a weighted subset $S \subset P$ is a (k, ϵ) -coreset if for all sets $C \subset C$ of *k* centers it holds

 $|\operatorname{cost}_{W}(S, C) - \operatorname{cost}(P, C)| \le \epsilon \operatorname{cost}(P, C)$

where
$$cost_w(S, C) = \sum_{p \in S} \min_{c \in C} w(p)(p, c)$$
.

Introduction	Insights from BIRCH	Coreset Theory ○●○○	BICO 000000	Experiments	End
Coresets					

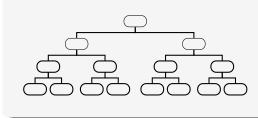
Given a set of points *P*, a weighted subset $S \subset P$ is a (k, ϵ) -coreset if for all sets $C \subset C$ of *k* centers it holds

 $|\operatorname{cost}_{W}(S, C) - \operatorname{cost}(P, C)| \le \epsilon \operatorname{cost}(P, C)$

where
$$\operatorname{cost}_w(S, C) = \sum_{p \in S} \min_{c \in C} w(p)(p, c)$$
.

Introduction	Insights from BIRCH	Coreset Theory	BICO 000000	Experiments	End
Coresets					

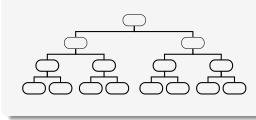
Merge & Reduce



- read data in blocks
- compute a coreset for each block → s
- merge coresets in a tree fashion
- \rightsquigarrow space $s \cdot \log n$

Introduction	Insights from BIRCH	Coreset Theory	BICO 000000	Experiments 0000000	End
Coresets					

Merge & Reduce



- read data in blocks
- compute a coreset for each block → s
- merge coresets in a tree fashion
- \rightsquigarrow space $s \cdot \log n$

Runtime: No asymptotic increase, but overhead in practice

BIRCH uses point-wise updates :-)

Introduction	Insights from BIRCH	Coreset Theory ○○○●	BICO 000000	Experiments	End
Coresets					

Insights from Coreset Threory

- Limit the induced error
- → Goal: Point set P' in each node should induce at most $\varepsilon \cdot \operatorname{cost}(P', C)$ error (for an optimal solution C)
- → Base insertion decision on induced error
 - Replacing all points in a node by the (weighted) centroid is like moving all points to the centroid
 - Induced error is connected to the 1-means cost of the set

Introduction	Insights from BIRCH	Coreset Theory ○○○●	BICO 000000	Experiments	End
Coresets					

Insights from Coreset Threory

- Limit the induced error
- → Goal: Point set P' in each node should induce at most $\varepsilon \cdot \operatorname{cost}(P', C)$ error (for an optimal solution C)
- → Base insertion decision on induced error
 - Replacing all points in a node by the (weighted) centroid is like moving all points to the centroid
 - Induced error is connected to the 1-means cost of the set

Side note

Avoiding Merge & Reduce is a good idea

Introduction	Insights from BIRCH	Coreset Theory	BICO •00000	Experiments 0000000	End
BIRCH meets Co	presets				

- nodes in the tree represent subsets of points
- points at the same node get the same center
- improve insertion decision

Introduction	Insights from BIRCH	Coreset Theory	BICO •00000	Experiments 0000000	End
BIRCH meets Co	presets				

- nodes in the tree represent subsets of points
- points at the same node get the same center
- improve insertion decision

Adjustments

Nodes additionally have a reference point and a range

Introduction	Insights from BIRCH	Coreset Theory	BICO •00000	Experiments 0000000	End
BIRCH meets C	oresets				

- nodes in the tree represent subsets of points
- points at the same node get the same center
- improve insertion decision

Adjustments

- Nodes additionally have a reference point and a range
- Closest is now determined by Euclidean distance

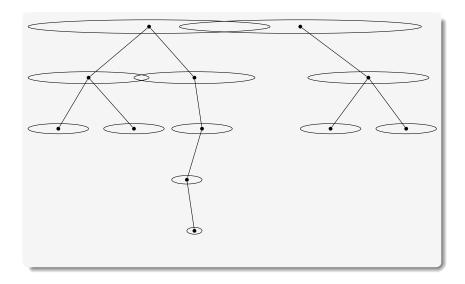
Introduction	Insights from BIRCH	Coreset Theory	BICO •00000	Experiments 0000000	End
BIRCH meets C	oresets				

- nodes in the tree represent subsets of points
- points at the same node get the same center
- improve insertion decision

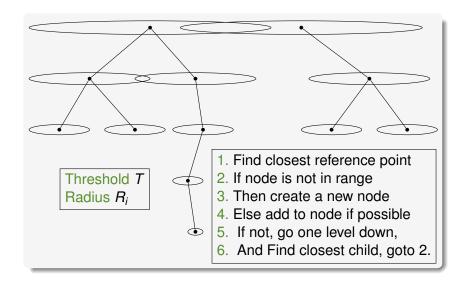
Adjustments

- Nodes additionally have a reference point and a range
- Closest is now determined by Euclidean distance
- We say a node is full with regard to a point p if adding p to the node increases its 1-means cost above a threshold T

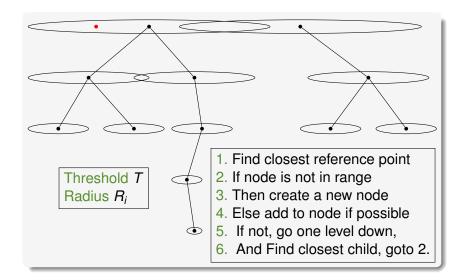
Introduction	Insights from BIRCH	Coreset Theory	BICO ○●○○○○○	Experiments	End



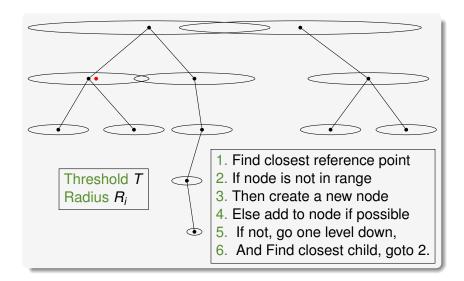
Introduction	Insights from BIRCH	Coreset Theory	BICO 000000	Experiments	End



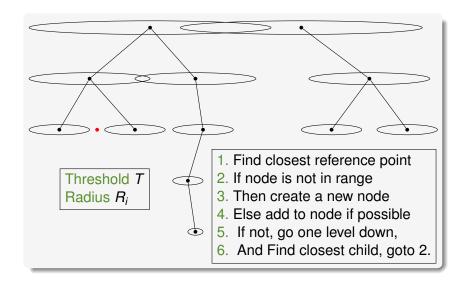
Introduction	Insights from BIRCH	Coreset Theory	BICO ○●○○○○	Experiments	End



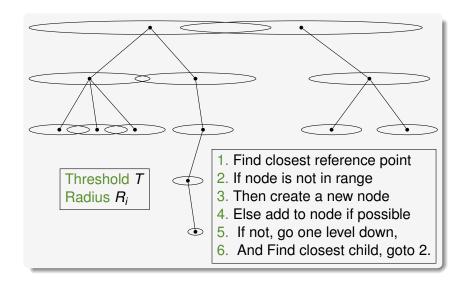
Introduction	Insights from BIRCH	Coreset Theory	BICO ○●○○○○	Experiments	End



Introduction	Insights from BIRCH	Coreset Theory	BICO ○●○○○○	Experiments	End



Introc		,	BICO ○●○○○○	Experiments 0000000	End



Introduction	Insights from BIRCH	Coreset Theory	BICO 000000	Experiments	End
BIRCH meets Co	presets				

Theorem

For $T \approx OPT/(k \cdot \log n \cdot 8^d \cdot \varepsilon^{d+2})$ and $R_i := \sqrt{T/(8 \cdot 2^i)}$,

 the set of centroids weighted by the number of points in the subset is a (1 + ε)-coreset

• for constant d, the number of nodes is $\mathcal{O}(k \cdot \log n \cdot \varepsilon^{-(d+2)})$

Introduction	Insights from BIRCH	Coreset Theory	BICO 000000	Experiments	End
BIRCH meets Co	presets				

Theorem

For $T \approx OPT/(k \cdot \log n \cdot 8^d \cdot \varepsilon^{d+2})$ and $R_i := \sqrt{T/(8 \cdot 2^i)}$,

- the set of centroids weighted by the number of points in the subset is a (1 + ε)-coreset
- for constant *d*, the number of nodes is $\mathcal{O}(k \cdot \log n \cdot \varepsilon^{-(d+2)})$

Problem

We do not know OPT and thus cannot compute T!

Introduction	Insights from BIRCH	Coreset Theory	BICO 000000	Experiments	End
BIRCH meets Co	presets				

Rebuilding algorithm

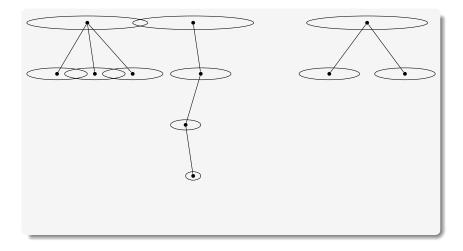
- Double T when maximum number of nodes is reached
- 'Rebuild' the tree according to new T

Introduction	Insights from BIRCH	Coreset Theory	BICO 000●00	Experiments	End
BIRCH meets Co	presets				

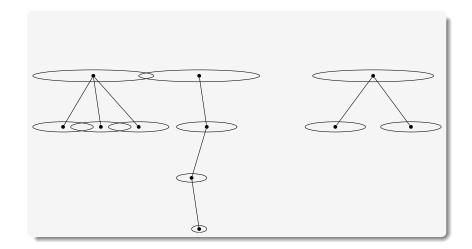
Rebuilding algorithm

- Double T when maximum number of nodes is reached
- 'Rebuild' the tree according to new T
- Let T' and R'_i be before and T and R_i be after the doubling
- Move all nodes one level down and create empty first level
- Notice that $R_i = \sqrt{T/(8 \cdot 2^i)} = \sqrt{T'/8 \cdot 2^{i-1}} = R'_{i-1}$
- ⇒ Radius doesn't change!

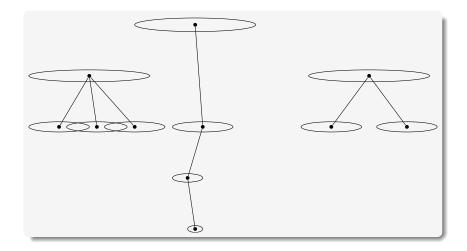
Introduction	Insights from BIRCH	Coreset Theory	BICO 0000●0	Experiments	End



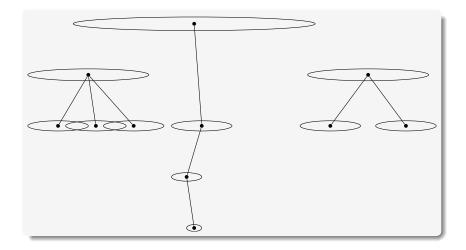
Introduction	Insights from BIRCH	Coreset Theory	BICO 0000●0	Experiments	End



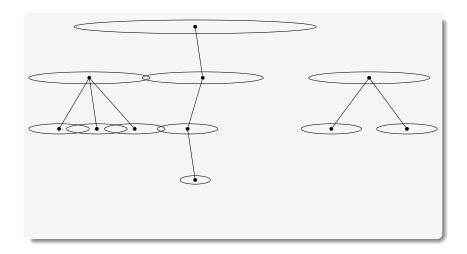
Introduction	Insights from BIRCH	Coreset Theory	BICO 0000●0	Experiments	End



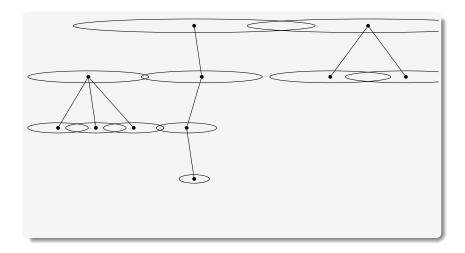
Introduction	Insights from BIRCH	Coreset Theory	BICO 0000●0	Experiments	End



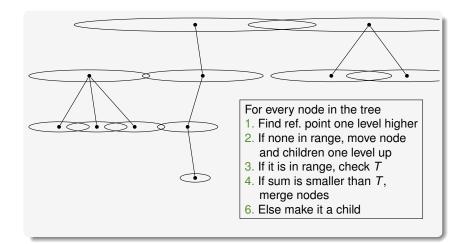
Introduction	Insights from BIRCH	Coreset Theory	BICO 0000●0	Experiments	End



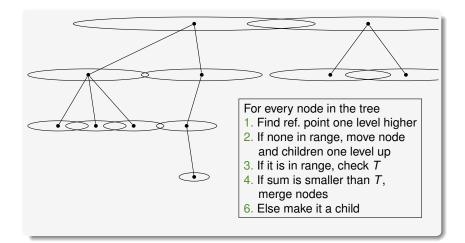
Introduction	Insights from BIRCH	Coreset Theory	BICO 0000●0	Experiments 0000000	End



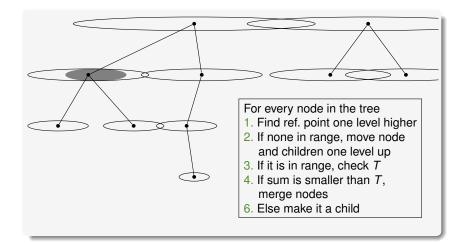
Introduction	Insights from BIRCH	Coreset Theory	BICO 0000●0	Experiments	End



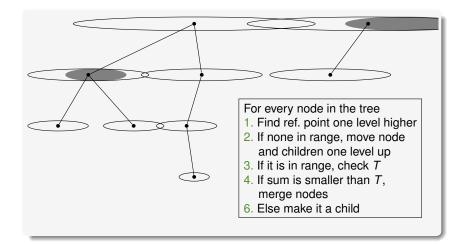
Introduction	Insights from BIRCH	Coreset Theory	BICO 0000●0	Experiments	End



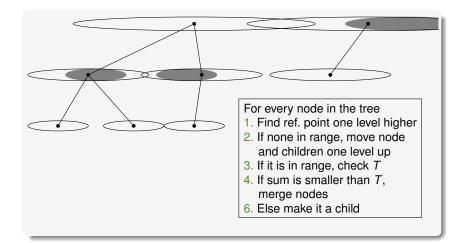
Introduction	Insights from BIRCH	Coreset Theory	BICO 0000●0	Experiments	End



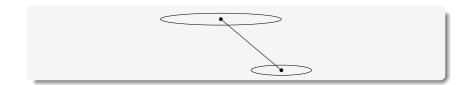
Introduction	Insights from BIRCH	Coreset Theory	BICO 0000●0	Experiments	End



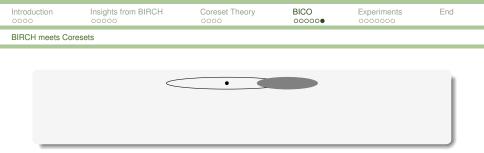
Introduction	Insights from BIRCH	Coreset Theory	BICO 0000●0	Experiments	End







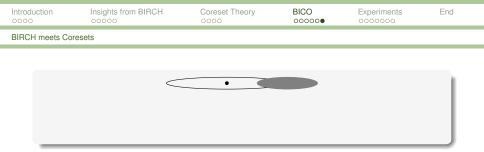
Merging might result in violations of the range of nodes



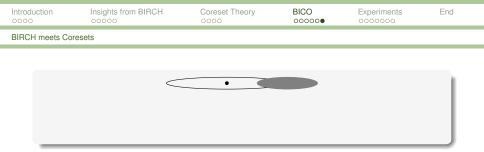
Merging might result in violations of the range of nodes

Introduction	Insights from BIRCH	Coreset Theory	BICO ○○○○○●	Experiments 0000000	End
BIRCH meets Co	resets				
	<	•			

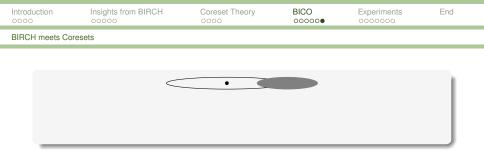
- Merging might result in violations of the range of nodes
- Increases the coreset size by a constant factor



- Merging might result in violations of the range of nodes
- Increases the coreset size by a constant factor
- But does not destroy the coreset property



- Merging might result in violations of the range of nodes
- Increases the coreset size by a constant factor
- But does not destroy the coreset property
- \Rightarrow BICO computes a coreset in the data stream setting $\ddot{-}$



- Merging might result in violations of the range of nodes
- Increases the coreset size by a constant factor
- But does not destroy the coreset property

 \Rightarrow BICO computes a coreset in the data stream setting $\ddot{-}$

... if we compute lower bound on T

Introduction	Insights from BIRCH	Coreset Theory	BICO 000000	Experiments •oooooo	End
BICO is cool :-)					

The actual solution is computed with *k*-means++.

Introduction	Insights from BIRCH	Coreset Theory	BICO 000000	Experiments •oooooo	End
BICO is cool :-)					

The actual solution is computed with *k*-means++.

Adjustments

Set coreset size to 200k

Introduction	Insights from BIRCH	Coreset Theory	BICO 000000	Experiments •oooooo	End
BICO is cool :-)					

The actual solution is computed with *k*-means++.

Adjustments

- Set coreset size to 200k
- Add heuristic speed-up to find closest reference point

Introduction	Insights from BIRCH	Coreset Theory	BICO 000000	Experiments •oooooo	End
BICO is cool :-)					

The actual solution is computed with *k*-means++.

Adjustments

- Set coreset size to 200k
- Add heuristic speed-up to find closest reference point

Speed-up

- Project all ref. points to *d* random 1-dim. subspaces
- Project new point p to the same subspaces
- Count how many ref. points are in range of p in every subspace
- Search nearest neighbor in the shortest list

Introduction	Insights from BIRCH	Coreset Theory	BICO 000000	Experiments •oooooo	End
BICO is cool :-)					

The actual solution is computed with *k*-means++.

Adjustments

- Set coreset size to 200k
- Add heuristic speed-up to find closest reference point

Speed-up

- Project all ref. points to *d* random 1-dim. subspaces
- Project new point p to the same subspaces
- Count how many ref. points are in range of p in every subspace
- Search nearest neighbor in the shortest list

Introduction	Insights from BIRCH	Coreset Theory	BICO 000000	Experiments 0e00000	End
BICO is cool :-)					

Data Sets

- Data Sets used in StreamKM++ paper from UCI repository: Tower, CoverType, Census and BigCross (cross product)
- CalTech128 by René Grzeszick, group of Prof. Fink
- consists of 128 SIFT descriptors of an object database

Introduction	Insights from BIRCH	Coreset Theory	BICO 000000	Experiments 000000	End
BICO is cool :-)					

Data Sets

- Data Sets used in StreamKM++ paper from UCI repository: Tower, CoverType, Census and BigCross (cross product)
- CalTech128 by René Grzeszick, group of Prof. Fink
- consists of 128 SIFT descriptors of an object database

Data Set Sizes

	BigCross	CalTech128	Census	CoverType	Tower
n	11620300	3168383	2458285	581012	4915200
d	57	128	68	55	3
n · d	662357100	405553024	167163380	31955660	14745600

Introduction	Insights from BIRCH	Coreset Theory	BICO 000000	Experiments 000000	End
BICO is cool :-)					

Implementations

- Author's implementations for StreamKM++ and BIRCH
- implementation for MacQueen's k-means from ESMERALDA (framework by group of Prof. Fink)

Introduction	Insights from BIRCH	Coreset Theory	BICO 000000	Experiments 000000	End
BICO is cool :-)					

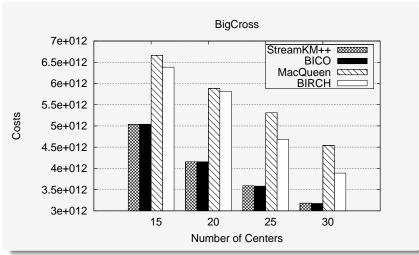
Implementations

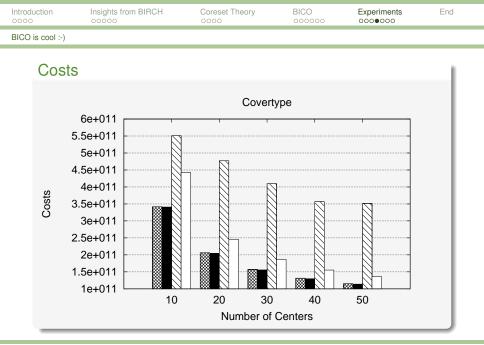
- Author's implementations for StreamKM++ and BIRCH
- implementation for MacQueen's k-means from ESMERALDA (framework by group of Prof. Fink)

Experiments

- Experiments done on mud1-6 and mud8
- 100 runs for every test instance
- values shown in the diagrams are mean values

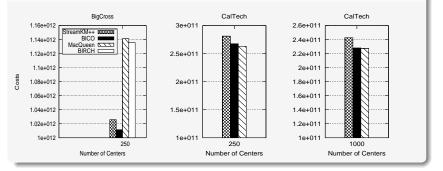
Costs





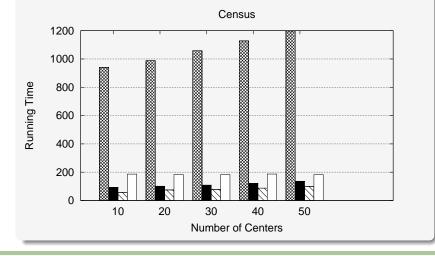
Introduction	Insights from BIRCH	Coreset Theory	BICO 000000	Experiments	End
BICO is cool :-)					

Costs

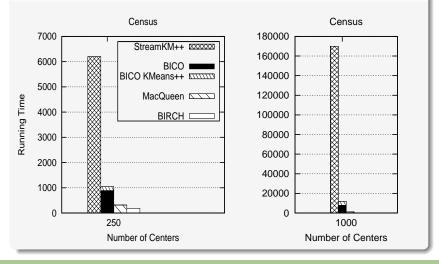


Introduction	Insights from BIRCH	Coreset Theory	BICO 000000	Experiments 0000000	End
BICO is cool :-)					

Running time

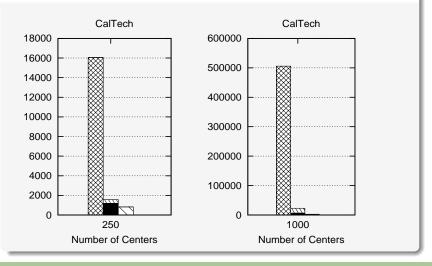


Introduction	Insights from BIRCH	Coreset Theory	BICO 000000	Experiments 0000000	End
BICO is cool :-)					

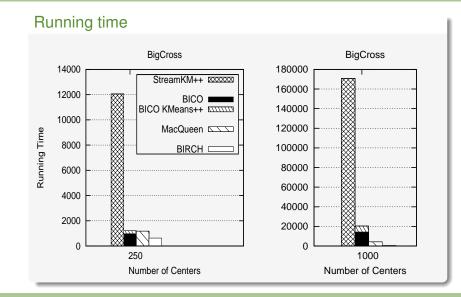


Introduction	Insights from BIRCH	Coreset Theory	BICO 000000	Experiments 0000000	End
BICO is cool :-)					

Running time



Introduction	Insights from BIRCH	Coreset Theory	BICO 000000	Experiments 0000000	End
BICO is cool :-)					



Introduction	Insights from BIRCH	Coreset Theory	BICO 000000	Experiments 0000000	End
BICO is cool :-)					

Trade-Off

	BIRCH	MQ	m = 200k	100 <i>k</i>	25 <i>k</i>
Time	616	4241	20271	5444	618
Costs	$58\cdot10^{10}$	$72\cdot 10^{10}$	$51 \cdot 10^{10}$	52 ·10 ¹⁰	$55\cdot 10^{10}$

- Tests run on on BigCross with k = 1000
- BICO is less than 1.5 times slower than MacQueen with m = 100k while still computing reasonable costs
- faster than BIRCH for m = 25k, still much better cost than BIRCH and MacQueen

Introduction	Insights from BIRCH	Coreset Theory	BICO 000000	Experiments 000000	End
BICO is cool :-)					

Ziele

- Implementierung in bekanntem Framework / Anbindung
- ---> Baustein für andere Algorithmen
- Vergleich verschiedener Strategien f
 ür Nearest Neighbor

Introduction	Insights from BIRCH	Coreset Theory	BICO 000000	Experiments	End

	BIRCH	MQ	m = 200k	100 <i>k</i>	25 <i>k</i>
Time	616	4241	20271	5444	618
Costs	58 · 10 ¹⁰	$72 \cdot 10^{10}$	51 · 10 ¹⁰	52 ·10 ¹⁰	$55 \cdot 10^{10}$

Thank you for your attention!