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VCG Mechanisms
Instructor: Thomas Kesselheim

So far, we considered single-parameter environments for mechanism-design problems. We
found a characterization of truthful mechanisms, making it somewhat easy to design a truthful
mechanism. For general settings, such a nice characterization does not exist. However, if the
task is to maximize social welfare and we do not care too much about computational issues,
there is a very elegant solution due to Vickrey, Clarke, and Groves.

1 Motivating Example: Combinatorial Auction
In a combinatorial auction, we have a set N of n bidders and a set M of m item. Each bidder i
has a privation valuation function vi : 2M → R≥0, defining a non-negative value of each subset
of items. Let Vi denote the set of all valuation functions. This set might be restricted to
particular functions in certain settings. An interesting class of valuation functions are unit-
demand functions, for which there are vi,j such that vi(S) = maxj∈S vi,j . That is, each bidder’s
valuation is only the maximum value of a single item in the set.

The set of feasible allocations is given as X = {(S1, . . . , Sn) | Si ∩ Si′ = ∅ for i 6= i′}.
A direct mechanism is a pair M = (f, p), consisting of an allocation function f : V → X and

a payment rule p : V → Rn, where V = V1 × . . .× Vn.

2 Model
Combinatorial auctions are just one example of a problem that fits into our general model. We
may have an arbitrary set of feasible outcomes X. For each bidder i, there is a set Vi of possible
valuation functions vi : X → R. (Syntactically this is a little different and more general than the
valuations in the combinatorial auctions above.) We denote V = V1 × . . .× Vn.

A direct mechanism is a pairM = (f, p), consisting of an allocation function f : V → X and a
payment rule p : V → Rn. Bidder i’s utility under bids b ∈ V is given by ui(b, vi) = vi(f(b))−pi(b).

3 VCG Mechanism with Clarke Pivot Rule
As a matter of fact, sometimes people refer to VCG mechanisms as a class of mechanisms
following a particular template. However, whenever one says “the” VCG mechanism, this will
refer to the following VCG mechanism with Clarke pivot rule.

Definition 9.1. Let f : V → X be a function that maximizes declared welfare, that is f(b) ∈
arg maxx∈X

∑
i bi(x) for all b ∈ V . Then the VCG mechanism with Clarke pivot rule is defined

as M = (f, p), where
pi(b) = max

x∈X

∑
j 6=i

bj(x)−
∑
j 6=i

bj(f(b)) .

The idea behind this payment rule is as follows. The first sum represents the declared welfare
of all bidders except for i that would be achieved if we were not restricted in any way. The
second term is exactly the amount that is achieved by f(b), which means that we are optimizing
over all bidders including i. The difference therefore is the loss of declared welfare due to the
presence of bidder i. This is called bidder i’s externality.

Theorem 9.2 (Vickrey-Clarke-Groves). The VCG mechanism with Clarke pivot rule is dominant-
strategy incentive compatible.
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Proof. Observe that for all bi, b−i,

ui(bi, b−i) = vi(f(bi, b−i))− pi(bi, b−i) = vi(f(bi, b−i))−max
x∈X

∑
j 6=i

bh(x) +
∑
j 6=i

bj(f(bi, b−i)) .

On input (vi, b−i), the function f returns a solution x∗, which maximizes vi(x∗) +
∑

j 6=i bj(x∗).
That is, for any x ∈ X, we have vi(x∗) +

∑
j 6=i bj(x∗) ≥ vi(x) +

∑
j 6=i bj(x). In particular, this

holds for x = f(bi, b−i) for all possible bi.
Consequently,

vi(f(vi, b−i)) +
∑
j 6=i

bj(f(vi, b−i)) ≥ vi(f(bi, b−i)) +
∑
j 6=i

bj(f(bi, b−i))

and therefore
ui(vi, b−i) ≥ ui(bi, b−i) .

Besides incentive compatibility, the mechanism also enjoys the following nice properties:

• Individual Rationality. If vi(x) ≥ 0 for all x, then ui(vi, b−i) ≥ 0 for all b−i. The reason
is that

ui(vi, b−i) = vi(f(vi, b−i)) +
∑
j 6=i

bj(f(vi, b−i))−max
x∈X

∑
j 6=i

bj(x)

=

max
s∈S

vi(x) +
∑
j 6=i

bj(x)

−
max

x∈X

∑
j 6=i

bj(x)

 ≥ 0 .

The term is non-negative because vi(x) +
∑

j 6=i bj(x) ≥
∑

j 6=i bj(x) for all x. Therefore this
also holds for the maximum.

• No Positive Transfer. For all b, we have

pi(b) =

max
x∈X

∑
j 6=i

bj(x)

−
∑

j 6=i

bj(f(b))

 ≥ 0 ,

because
∑

j 6=i bj(f(b)) ≤ maxx∈X
∑

j 6=i bj(x): The left-hand side is just one possible value
that this expression can take whereas it is maximized on the right-hand side.

4 Examples

4.1 Single-Item Auctions Revisited

As a first example for VCG, let us consider single-item auctions again. Remember that each
agent’s valuation function vi given by

vi(x) =
{
ti if agent i receives the item in x
0 otherwise .

Given the vector b, the function f selects the agent with the highest bid. Let this agent be
denoted by i∗. For i∗, we now have

pi∗(b) = max
x∈X

∑
j 6=i∗

bj(x)−
∑
j 6=i∗

bj(f(b)) .

We have maxx∈X
∑

j 6=i∗ bj(x) is exactly the second-highest bid. Furthermore, for j 6= i∗, we have
bj(f(b)) = 0 because agent j does not get the item.
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For all agents i 6= i∗

pi(b) = max
x∈X

∑
j 6=i

bj(x)−
∑
j 6=i

bj(f(b)) = bi∗ − bi∗ = 0 .

That is, agent i∗ pays the second highest bid, the other agents pay nothing. This is exactly
the second-price auction.

4.2 Sponsored Search Auctions

In a sponsored search auction, we sell k < n ad slots on a search results page. The higher the
slot is displayed on the page, the more likely it will be clicked. For slots 1, . . . , k, we assume
click through rates of α1 ≥ α2 ≥ . . . ≥ αm. Agent i’s valuation is expressed in terms of a single
number vi such that vi(s) = viαj if agent i gets slot j in s.

If v1 ≥ v2 ≥ . . . ≥ vn, then the social-welfare optimize allocation gives slot j to bidder
j. This results in social welfare

∑k
j=1 vjαj . The optimal social welfare without agent i is∑i−1

j=1 vjαj +
∑k+1

j=i+1 vjαj−1. Consequently, given truthful reports, agent i’s VCG payment is

pi(v) =
i−1∑
j=1

vjαj +
k+1∑

j=i+1
vjαj−1 −

i−1∑
j=1

vjαj +
k∑

j=i+1
vjαj

 =
k+1∑

j=i+1
vj(αj−1 − αj) .

Interestingly, for mysterious reasons in practice this scheme is not applied. Instead a rule
called generalized second price is used: Agent i has to pay vi+1αi+1. This is generally not
incentive compatible.

4.3 Unit-Demand Combinatorial Auction

Let us come back to our initial example of unit-demand combinatorial auctions. That is, there
are m items M and each bidder’s valuation is of them form vi(S) = maxj∈S vi,j . Maximizing the
declared welfare corresponds to finding the maximum-weight matching in a complete bipartite
graphs whose vertices are N ∪M . The edge between i ∈ N and j ∈M has weight vi,j .

Let us consider an example with three bidders 1, 2, 3 and three items A, B, C. We only
draw edges of positive value.

1

2

3

A

B

C

10

5

3

2

1

The optimal matching is given by the thick edges. The payments are computed by removing
the respective bidder vertex and re-optimizing. Consequently, the payment of a bidder is given
by the most valuable augmenting path that arises by removing him. In the above example,
bidder 1 has to pay 5− 3 + 2− 1 = 3.
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5 Limitations
We have seen that VCG mechanisms work well in many environments. However, it does this
now solve all questions regarding mechanism design with money. There are several limitations:
First of all, to build a VCG mechanism, we have to solve the welfare-maximization problem
optimally. In many cases, this problem is actually intractable. Below we will see that only
approximating social welfare is not enough. VCG also does not optimize the payments in any
sense. For example, it does not even try to maximize the revenue obtained by the payments.
Also, agents only have a limited budget, but we do not ensure that they only spend a certain
amount. Finally, it might be a problem that agents collude. Although each single agents cannot
benefit from false reports themselves, other agents can.

Probably the biggest limitation from an algorithmic aspect is the fact that VCG requires
a welfare-maximizing solution. It will be instructive to see that this is indeed necessary
because there are approximation algorithms that cannot be turned into an incentive compatible
mechanism.

Theorem 9.3. There are functions f such that there is no truthful mechanism (f, p), even for∑
i bi(f(b)) ≥ 1

2 maxx∈X
∑

i bi(x) for all b.

Proof. We again consider unit-demand combinatorial auctions. A fast way to find a reasonable
matching is the greedy algorithm: Always take the maximum-weight edge whose both endpoints
are still unmatched. It is easy to see that this algorithm is a 2-approximation. That is, we have∑

i bi(f(b)) ≥ 1
2 maxx∈S

∑
i bi(x) for all b.

We consider this kind of instance to show that no payment scheme can render the mechanism
incentive compatible.

1

2

A

B

x

y

0

1

There are two items A and B. Bidder 1 has values x and y; bidder 2 has values 0 and 1.
From different values of x and y, we will conclude properties of the payments that an incentive
compatible mechanism would need to fulfill. We keep bidder 2’s valuation and report fixed at all
times.

Step 1: In every report that bidder 1 can make that gets him item A, bidder 1 pays the
same amount. Suppose there is a pair of reports b1, b′1 with different payments in which bidder
1 gets item A. Without loss of generality p1(b1, v2) < p1(b′1, v2). If player 1’s true valuation is b′1
then he would be better off by reporting b1 instead. The same argument also holds for item B;
call the respective prices pA and pB.

Step 2: We now claim that pA = pB. Consider an arbitrarily small ε > 0. If x = 1 + 2ε,
y = 1+ε, then bidder 1 could misreport values 0 and 1+ε. We then have u1(v1, v2) = 1+2ε−pA,
u1(b′1, v2) = 1 + ε− pB. As u1(v1, v2) ≥ u1(b′1, v2), we have pB ≥ pA− ε. Therefore pB ≥ pA. We
can show pB ≤ pA, by considering x = 1 + ε, y = 1 + 2ε.

Step 3: Consider x = 1
4 , y = 1

2 . Truthful reporting gives bidder 1 a utility of u1(v1, v2) =
1
4 − pA. Claiming instead values 0 and 2 would give utility 1

2 − pB = 1
2 − pA.
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Recommended Literature
• Chapter 9.3 in the AGT book

• Tim Roughgarden’s lecture notes http://theory.stanford.edu/~tim/f13/l/l7.pdf
and lecture video https://youtu.be/TLl3FVXPVIY

• Eva Tardos’s lecture notes http://www.cs.cornell.edu/courses/cs6840/2012sp/lec18.
pdf
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