
Algorithmic Game Theory, Summer 2017 Lecture 3 (5 pages)

Complexity of Pure Nash Equilibria in Congestion Games

Instructor: Thomas Kesselheim

We have seen that every finite game has a mixed Nash equilibrium. Every congestion game
even has a pure Nash equilibrium. However, no algorithm is known to efficiently compute these
equilibria. Therefore today’s question is: What is the computational complexity of finding an
equilibrium? How can one formally show hardness?

1 Complexity Classes for Search Problems

We know the respective equilibrium always exists. Therefore, we are not talking about decision
problems here but about search problems. This kind of problems is covered by a complexity
class called FNP, which extends NP. Stated informally, a search problem belongs to FNP if,
given an instance and a solution, one can verify in polynomial time whether this solution is
correct. Search problems in FP can be solved in polynomial time, which means that, for a given
instance, one can compute a feasible solution in polynomial time or output that there is none.

The mentioned equilibrium problems are contained in FNP. However, they are not FNP-
complete. They are typical representatives of two subclasses, called PLS and PPAD. Both PLS
and PPAD contain many problems for which no polynomial time algorithm is known. Therefore
PLS- or PPAD-completeness gives strong evidence that a search problem is hard to solve. One
can think of the relations of the classes as depicted in this diagram1:

FPPPAD PLS

FNP

The notion of “polynomial time” always depends on the input encoding: What is considered
the input size? For example, in a bimatrix game, the input size is the size of the matrices. In
this representation, it is easy to find a pure Nash equilibrium in polynomial time because the
input length corresponds to the number of pure states and we only have to check each of these
states. Finding a mixed Nash equilibrium, however, is PPAD-complete. We will not cover the
definition of PPAD.

A congestion game can be represented much more succinctly. One only has to define a delay
function for every resource. In case of n players and m resources, these are only nm numbers.
However, a single player may have up to 2m different strategies. Therefore, the number of
states can be as large as (2m)n = 2nm. We will show that finding a pure Nash equilibrium in a
congestion game is PLS-complete.

2 The Complexity Class PLS

We will interpret the problem of finding a pure Nash equilibrium as the problem of finding a
local optimum. We will show that it is at least as hard as any other local search problem in
which single improvement steps work in polynomial time.

1Under some assumptions. The relation between PPAD and PLS is, for example, unsettled.

Algorithmic Game Theory, Summer 2017 Lecture 3 (page 2 of 5)

Definition 3.1. A local search problem Π is given by its set of instances IΠ. For every instance
I ∈ IΠ, we are given a finite set of feasible solutions F(I), an objective function c : F(I)→ Z,
and for every feasible solution s ∈ F(I), a neighborhood N(s, I) ⊆ F(I). A feasible solution
s ∈ F(I) is a local optimum if the objective value c(s) is at least as good as the objective value
c(s′) of every other feasible solution s′ ∈ N(s, I).

How hard is it to compute a local optimum? To make this a well defined question we need
the following definition.

Definition 3.2 (Johnson, Papadimitriou, Yannakakis 1988). A local search problem Π belongs
to the class PLS, for Polynomial Local Search, if the following polynomial-time algorithms exist:

Algorithm A: Given an instance I ∈ IΠ, return a feasible solution s ∈ F(I).

Algorithm B: Given an instance I ∈ IΠ and a feasible solution s ∈ F(I), return the objective
value c(s).

Algorithm C: Given an instance I ∈ IΠ and a feasible solution s ∈ F(I), either certify that
s is a local optimum or return a solution s′ ∈ N(s, I) with better objective
value.

For every problem in PLS one can apply the following natural heuristic:

Local Search Algorithm

1. Use Algorithm A to find a feasible solution s ∈ F(I).

2. Iteratively, use Algorithm C to find a better feasible solution s′ ∈ N(s, I) until a locally
optimal solution is found.

Note that this local search procedure is guaranteed to terminate because there are only
finitely many candidate solutions, and in each iteration the objective function strictly improves.
However, because there can be exponentially many feasible solutions, the local search algorithm
need not run in polynomial time.

Question: For a given local search problem Π, is there a polynomial-time algorithm (not
necessarily local search) for finding a local optimum?

3 Max-Cut and PLS-Completeness

Definition 3.3 (Max-Cut). The search problem Max-Cut is defined as follows.

Instances: Graph G = (V,E) with edge weights w : E → N.
Feasible solutions: A cut, which partitions V into two sets Left and Right.
Objective function: The value of a cut is the weighted number of edges with one

endpoint in Left and one endpoint in Right.
Neighborhood: Two cuts are neighboring if one can obtain one from the

other by moving only one node from Left to Right or vice versa.

Observation 3.4. (Membership in PLS) Max-Cut is a PLS problem.

Example 3.5. Consider the following instance of Max-Cut:

Algorithmic Game Theory, Summer 2017 Lecture 3 (page 3 of 5)

Left Right

v1 v2

v3v4

e1

e6

e4 e2
e5

e3

Consider weights wei = i for 1 ≤ i ≤ 6. Then the cut that separates Left = {v1, v4} from
Right = {v2, v3} has a weight of 15. The four neighboring cuts each separate one vertex from
the other three vertices. These cuts have weight 11, 8, 11, and 12. So the indicated cut is a
local optimum. This cut, however, is not a global optimum: the cut that separates v1, v2 from
v3, v4 has weight 17.

Max-Cut unlike Min-Cut is an NP-hard problem, but we are not interested in a globally
optimal solution. We only want a local optimum. Intuitively, computing a locally optimal
solution should be easier.

A concrete example is Max-Cut in graphs G = (V,E) with weights we = 1 for all e ∈ E.
Here, we can find a local optimum with the local search algorithm in at most |E| steps, while
computing a maximum cut remains NP-hard.

Quite surprisingly, for Max-Cut in graphs with general weights no polynomial-time algorithm
for computing a local optimum is known; and we can show that this problem is “as hard as”
any other local search problem.

Definition 3.6 (PLS-reduction). Given two PLS problems Π1 and Π2, there is a PLS-reduction
(written Π1 ≤PLS Π2) if there are two polynomial-algorithms f and g:

• Algorithm f maps every instance I ∈ IΠ1 to an instance f(I) ∈ IΠ2.

• Algorithm g maps every local optimum s of f(I) ∈ IΠ2 to a local optimum g(s) of I ∈ IΠ1.

As usual, one can read the symbol ≤PLS as “is not harder than”. The reduction Π1 ≤PLS Π2

gives us a way to derive an algorithm for Π1 from an algorithm for Π2.

Definition 3.7 (PLS-completeness). A problem Π∗ in PLS is called PLS-complete if, for every
problem Π in PLS, it holds Π ≤PLS Π∗.

It is generally assumed that there are problems in PLS that cannot be solved in polynomial
time. For this reason, showing PLS-completeness effectively shows that presumably there is no
polynomial-time algorithm.

Theorem 3.8 (Schäffer and Yannakakis 1991). Max-Cut is PLS-complete.

As in the theory of NP-completeness, showing PLS-completeness requires an “initial” PLS-
complete problem. Such a problem was given by Johnson et al.; PLS-completeness of other
problems such as Max-Cut can then be established through reduction. It is worth pointing
out that in the original problem, local search takes (worst-case) exponential time and that all
known reductions preserve these bad instances.

4 PLS-Completeness of Pure Nash in General Congestion Games

Let us now interpret the problem of finding a pure Nash equilibrium in a congestion game
as a local search problem. In this case, the feasible solutions are strategy profiles. They are

Algorithmic Game Theory, Summer 2017 Lecture 3 (page 4 of 5)

neighboring if they differ in the choice of only a single player. We have seen before that in a
unilateral deviation step, the Rosenthal potential changes by the same amount as the respective
player’s cost. For this reason, pure Nash equilibria correspond to local minima of Rosenthal’s
potential function.

Observation 3.9 (Membership in PLS). It is a PLS problem to find a pure Nash equilibrium
in a congestion game.

Theorem 3.10. Max-Cut ≤PLS Pure Nash Equilibrium in Congestion Games

Proof. For this reduction, we have to map instances of Max-Cut to congestion games. Given
a graph G = (V,E) with edge weights w : E → N, this game is defined as follows. Players

correspond to the vertices V . For each edge e ∈ E, we add two resources rleft
e and rright

e . The
delays are defined by

drlefte
(k) = d

rrighte
(k) =

{
0 for k = 1

we for k ≥ 2
.

Each player v ∈ V has two strategies, namely either to choose all the “left” resources for its
incident edges {rleft

e | v ∈ e} or all the “right” resources for its incident edges {rright
e | v ∈ e}.

This way, cuts in the graphs are in one-to-one correspondence to strategy profiles of the
game. A cut of weight W is mapped to a strategy profile S of Rosenthal potential

∑
e not cut we =∑

e∈E we−W and vice versa. To see this, consider an edge e ∈ E. If its endpoints are in different
sets of the cut, its resources contribute nothing to the potential; if its endpoints are in the same
set, then the contribution is 0 + we = we.

r
eleft1

r
eleft2

r
eleft3

r
eleft4

r
eleft5

r
eleft6

r
eright1

r
eright2

r
eright3

r
eright4

r
eright5

r
eright6

Figure 1: Potential game instance derived from the Max-Cut instance in Example 3.5. Players
are color-coded. A player can either choose all solid or all dashed boxes in his color. The solid
boxes correspond to the locally optimal cut that separates v1, v3 from v2, v4. The only non-zero
contributions to the potential function come from the edges that are contained in either Left or
Right, namely e2 and e4 with weight 2 and 4. Their sum, 6, is equal to the total edge weight
minus the weight of the cut, 21− 15.

Consequently, local maxima of Max-Cut correspond to local minima of the Rosenthal po-
tential, which are exactly the pure Nash equilibria. Therefore, the second part of the reduction
is again trivial.

Note that the above reduction was to a congestion game in which the players’ strategy sets
are not identical (so it is asymmetric) and required strategies to be arbitrary subsets of the
resources (as opposed to, e.g., paths in a network). It turns out that either restriction can be
dropped and the problem remains PLS-complete; but dropping both turns the problem into one
that one can solve in polynomial time.

Algorithmic Game Theory, Summer 2017 Lecture 3 (page 5 of 5)

Recommended Literature

• D. S. Johnson, C. H. Papadimitriou, M. Yannakakis. How easy is local search? Journal
of Computer and System Sciences, 37(1):79-100, 1988. (Class PLS, Cook-Like Theorem
for CircuitFlip)

• A. Fabrikant, C. H. Papadimitriou, K. Talwar. The complexity of pure Nash equilibria.
STOC 2004. (First Proof of PLS-Completeness of Pure Nash in Congestion Games)

• A. A. Schäffer and M. Yannakakis. Simple local search problems that are hard to solve.
SIAM Journal on Computing, 20(1):56-87, 1991. (PLS-Completeness in Congestion Games
via Max-Cut)

• H. Ackermann, H. Röglin, B. Vöcking. On the impact of combinatorial structure on con-
gestion games. Journal of the ACM, 55(6), 2008. (Further Results on PLS-Completeness)

	Complexity Classes for Search Problems
	The Complexity Class PLS
	Max-Cut and PLS-Completeness
	PLS-Completeness of Pure Nash in General Congestion Games

