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Mixed Nash Equilibria
Instructor: Thomas Kesselheim

In this lecture, we introduce the general framework of games. Congestion games, as introduced
in the last lecture, are a special case. The notion of pure Nash equilibria readily generalizes but
pure Nash equilibria might not exist. Therefore, we will introduce the concept of mixed Nash
equilibria, which always exist in games with finitely many players and finitely many strategies.

1 Normal Form Game
Definition 2.1. A (normal form, payoff maximization) game is a triple (N , (Si)i∈N , (ui)i∈N )
where

• N is the set of players, n = |N |,

• Si is the set of (pure) strategies of player i,

• S =
∏

i∈N Si is the set of states,

• ui : S → R is the payoff/utility function of player i ∈ N . In state s ∈ S, player i receives
a payoff of ui(s).

We denote by s−i = (s1, ..., si−1, si+1, ..., sn) a state s without the strategy si. This notation
allows us to concisely define a unilateral deviation of a player. For i ∈ N , let s ∈ S and s′i ∈ Si,
then (s′i, s−i) = (s1, . . . , si−1, s

′
i, si+1, . . . , sn).

Games with two players with finitely many strategies can be described by two matrices
A = (as1,s2)s1∈S1,s2∈S2 and B = (bs1,s2)s1∈S1,s2∈S2 (bimatrix game). Player 1 (referred to as row
player) chooses a row; player two (column player) chooses a column. Their payoffs are given as
u1(s) = as1,s2 , u2(s) = bs1,s2 .

Example 2.2 (Battle of the Sexes). Suppose Angelina and Brad go to the movies. Angelina
prefers watching movie A, Brad prefers watching movie B. However, both prefer watching a
movie together to watching movies separately.

A B
4 1

A
5 1

0 5
B

0 4

2 Pure Nash Equilibrium
Definition 2.3. A strategy si is called a best response for player i ∈ N against a collection of
strategies s−i if ui(si, s−i) ≥ ui(s′i, s−i) for all s′i ∈ Si.

Note: A strategy si is a dominant strategy if and only if si is a best response for all s−i.
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Definition 2.4. A state s ∈ S is called a pure Nash equilibrium if si is a best response against
the other strategies s−i for every player i ∈ N .

So, a pure Nash equilibrium is stable against unilateral deviation. No player can reduce his
cost by only changing his own strategy.

Pure Nash equilibria need not be unique.

Example 2.5 (Battle of the Sexes). We can find its pure Nash equilibria (A,B) and (B,A) by
marking best responses with boxes.

A B
1 6

A
2 6

5 2
B

5 1

A state is a Nash equilibrium if and only if it is marked for every player.

Not every game has a pure Nash equilibrium.

Example 2.6 (Rock-Paper-Scissors). The well-known game rock-paper-scissors can be repre-
sented by the following payoff matrix.

R P S
0 1 -1

R
0 -1 1

-1 0 1
P

1 0 -1
1 -1 0

S
-1 1 0

There is no pure Nash equilibrium: In each of the nine states, at least one of the two players
does not play a best response.

3 Mixed Nash Equilibrium
Definition 2.7. A mixed strategy σi for player i is a probability distribution over the set of
pure strategies Si.

We will only consider the case of finitely many pure strategies and finitely many players. In
this case, we can write a mixed strategy σi as (σi,si)si∈Si with

∑
si∈Si

σi,si = 1. The payoff of a
mixed state σ for player i is

ui(σ) =
∑
s∈S

p(s) · ui(s) ,

where p(s) =
∏

i∈N σi,si is the probability that the outcome is pure state s.
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Definition 2.8. A mixed strategy σi is a (mixed) best-response strategy against a collection of
mixed strategies σ−i if ui(σi, σ−i) ≥ ui(σ′i, σ−i) for all other mixed strategies σ′i.

Definition 2.9. A mixed state σ is called a mixed Nash equilibrium if σi is a best-response
strategy against σ−i for every player i ∈ N .

Note that every pure strategy is also a mixed strategy and every pure Nash equilibrium is
also a mixed Nash equilibrium.

It is enough to only consider deviations to pure strategies.

Lemma 2.10. A mixed strategy σi is a best-response strategy against σ−i if and only if
ui(σi, σ−i) ≥ ui(s′i, σ−i) for all pure strategies s′i ∈ Si.

Proof. The “only if” part is trivial: Every pure strategy is also a mixed strategy.
For the “if” part, let σ−i be an arbitrary mixed strategy profile for all players except for i.

Furthermore, let σi be a mixed strategy for player i such that ui(σi, σ−i) ≥ ui(s′i, σ−i) for all
pure strategies s′i ∈ Si.

Observe that for any mixed strategy σ′i, we have ui(σ′i, σ−i) =
∑

s′
i∈Si

σ′i,s′
i
ui(s′i, σ−i) ≤

maxs′
i∈Si

ui(s′i, σ−i). Using that ui(s′i, σ−i) ≤ ui(σi, σ−i) for all s′i ∈ Si, we are done.

While pure Nash equilibria do not necessarily exist, mixed Nash equilibria always exist if the
number of players and the number of strategies is finite.

Theorem 2.11 (Nash’s Theorem). Every finite normal form game has a mixed Nash equilibrium.

Nash’s theorem is usually proved via Brouwer’s fixed point theorem.

Theorem 2.12 (Brouwer’s Fixed Point Theorem). Every continuous function f : D → D
mapping a compact and convex nonempty subset D ⊆ Rm to itself has a fixed point x∗ ∈ D with
f(x∗) = x∗.

As a reminder, these are the definitions of the terms used in Brouwer’s fixed point theorem.
Here, ‖ · ‖ denotes an arbitrary norm, for example, ‖x‖ = maxi|xi|.

• A set D ⊆ Rm is convex if for any x, y ∈ D and any λ ∈ [0, 1] we have λx+ (1− λ)y ∈ D.

x
y

convex

x y

not convex

• A set D ⊆ Rm is compact if and only if it is closed and bounded.

• A set D ⊆ Rm is bounded if and only if there is some bound r ≥ 0 such that ‖x‖ ≤ r for
all x ∈ D.
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• A set D ⊆ Rm is closed if it contains all its limit points. That is, consider any convergent
sequence (xn)n∈N within D, i.e., limn→∞ xn exists and xn ∈ D for all n ∈ N. Then
limn→∞ xn ∈ D.

[0, 1] is closed and bounded
(0, 1] is not closed but bounded

[0,∞) is closed and unbounded

• A function f : D → Rm is continuous at a point x ∈ D if for all ε > 0, there exists δ > 0,
such that for all y ∈ D: If ‖x− y‖ < δ then ‖f(x)− f(y)‖ < ε.
f is called continuous if it is continuous at every point x ∈ D.

Equivalent formulation of Brouwer’s fixed point theorem in one dimension:
For all a, b ∈ R, a < b, every continuous function f : [a, b]→ [a, b] has a fixed point.

b

b

a

a

4 Bonus: Proof of Nash Theorem
Proof of Theorem 2.11. Consider a finite normal form game. Without loss of generality let
N = {1, . . . , n}, Si = {1, . . . ,mi}. So the set of mixed states X can be considered a subset of
Rm with m =

∑n
i=1mi.

Exercise: Show that X is convex and compact.
We will define a function f : X → X that transforms a mixed strategy profile into another

mixed strategy profile. The fixed points of f are shown to be the mixed Nash equilibria of the
game.

For mixed state x and for i ∈ N and j ∈ Si, let

φi,j(x) = max{0, ui(j, x−i)− ui(x)} .

So, φi,j(x) is the amount by which player i’s payoff would increase when unilaterally moving
from x to j if this quantity is positive, otherwise it is 0.

Observe that by Lemma 2.10 a mixed state x is a Nash equilibrium if and only if φi,j(x) = 0
for all i = 1, . . . , n, j = 1, . . . ,mi.

Define f : X → X with f(x) = x′ = (x′1,1, ..., x
′
n,mn

) by

x′i,j = xi,j + φi,j(x)
1 +

∑mi
k=1 φi,k(x)
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for all i = 1, . . . , n and j = 1, . . . ,mi.
Observe that x′ ∈ X. That means, f : X → X is well defined. Furthermore, f is continuous.

Therefore, by Theorem 2.12, f has a fixed point, i.e., there is a point x∗ ∈ X such that f(x∗) = x∗.
We only need to show that every fixed point x∗ of f is a mixed Nash equilibrium. So, in

other words, we need to show that f(x∗) = x∗ implies that φi,j(x∗) = 0 for all i = 1, . . . , n,
j = 1, . . . ,mi.

Fix some i ∈ N . Once we have shown that φi,j(x∗) = 0 for j = 1, . . . ,mi, we are done.
Let j′ be chosen such that ui(j′, x∗−i) is minimized among the j′ such that x∗i,j′ > 0. As ui(x∗) is

defined to be
∑mi

j=1 x
∗
i,j ·ui(j, x∗−i), we have ui(x∗) =

∑mi
j=1 x

∗
i,j ·ui(j, x∗−i) ≥

∑mi
j=1 x

∗
i,j ·ui(j′, x∗−i) =

ui(j′, x∗−i). Therefore φi,j′(x∗) = max{0, ui(j′, x∗−i)− ui(x∗)} = 0.
We now use the fact that x∗ is a fixed point. Therefore, we have

x∗i,j′ =
x∗i,j′ + φi,j′(x∗)

1 +
∑mi

k=1 φi,k(x∗) =
x∗i,j′

1 +
∑mi

k=1 φi,k(x∗) .

As x∗i,j′ > 0, we also have

1 = 1
1 +

∑mi
k=1 φi,k(x∗) ,

and so
mi∑

k=1
φi,k(x∗) = 0 .

Since φi,k(x∗) ≥ 0 for all k, we have to have φi,k(x∗) = 0 for all k. This completes the proof.

Recommended Literature
• Philip D. Straffin. Game Theory and Strategy, The Mathematical Association of America,

fifth printing, 2004. (For basic concepts)

• J. Nash. Non-Cooperative Games. The Annals of Mathematics 54(2):286-295. (Nash’s
original paper)


	Normal Form Game
	Pure Nash Equilibrium
	Mixed Nash Equilibrium
	Bonus: Proof of Nash Theorem

