Erratum

Errors

Page 49, line 4 from below replace $v, w \in\{0,1\}^{*}$ by $x, y \in\{0,1\}^{*}$.

Page 59, Algorithm 3.4.2. (2)
the information that replaces $v \longrightarrow$ the information that w replaces v

Page 65, line 11
Shiple et al. (1997) \longrightarrow Shiple et al. (1994)

Page 102, line 6 $k \leq\lfloor n / 3\rfloor \longrightarrow k \geq\lfloor n / 3\rfloor$

Page 131, Figure 6.1.1.
the inner nodes with label x_{3} and two 1-leaves as successors can be replaced by a 1 -leaf.

Page 134, Lemma 6.2.2.
$|G| \leq(n+1)\left|G^{\prime}\right| \longrightarrow|G| \leq 2 n\left|G^{\prime}\right|$
(The proof is correct. It adds at most n nodes per edge and not per node.)
Page 159, Exercise 6.17.
has polynomial size \longrightarrow
has non-polynomial size.
Page 160, Exercise 6.29.
$n>m^{2} \longrightarrow m>n^{2}$
Page 187, lines 12-9 from bottom should read: By Chernoff's bound, we obtain, for some $\alpha>0$, a lower bound of $1-\left(n / 2^{k-1}\right) 2^{-\alpha N(k)}$ on the probability that, for a random coloring of the vertices of V^{\prime}, for each $w_{j} \in W^{\prime}$ at least a third....

Page 276, Proposition 11.2.4.

It should be mentioned in the proposition that each probabilistic variable can be read only once.

Misprints

Page 2, line 2 dotted \longrightarrow dashed

Page 30, line 2 from bottom

$$
n-\log (n+1-\log n)+1) \longrightarrow n-\log (n+1-\log n)+1]
$$

Page 95, Theorem 5.2.2., line 2
parantheses not italics
Page 110, line 5 from bottom $k<i$ and $k>j \longrightarrow k<j$ and $k>i$

Page 180, line 1
parantheses not italics
Page 280/281, Theorem 11.4.2. and proof $\left\lceil\log 2 n \delta^{-2}\right\rceil \longrightarrow\left\lceil\log \left(2 n \delta^{-2}\right)\right\rceil$

